To enable the ISC3 a quick start in its substantive work, the customers ( UBA / BMUB ) have commis-sioned the drafting of three studies. The objective of this study was to identify to identify priority top-ics, i.e. technical solutions, concepts, business models etc., in the field of Sustainable Chemistry. A desk-top research has been performed to elucidate specific challenges and recent innovations in different fields of application and industrial sectors: 1) petrochemicals and base chemicals, 2) polymers,3) agro-chemicals (pesticides), 4) fertilisers, 5) coatings, dyes, pigments and adhesives, 6) detergents, cleaning agents and personal care products, 7) chemical fibres, 8) construction chemistry , 9) pharmaceuticals, 10) nanomaterials. Other chapters depict funding programmes and awards related to sustainable chemistry in the EU and the U.S., as well as tax instruments, funding and regulatory framework condi-tions supporting sustainable chemistry in Brazil as an example of a major emerging region with strong chemical industry. Finally, two separate chapters have been dedicated to the issue of sustainability assessment, in which a more in-depth discussion on the aspect of sustainability is provided for two examples: a) construction materials for thermal insulation as an application field and b) different synthesis routes from fossil and renewable feedstock to acrylic acid. Veröffentlicht in Texte | 83/2017.
Um dem ISC3 einen schnellen Einstieg in die fachliche Arbeit zu ermöglichen, haben die Auftraggeber (UBA/BMUB) die Erstellung dreier Studien beauftragt. Ziel dieser Studie war die Identifizierung prioritärer Themen, d.h. technischer Lösungen, Konzepte, Geschäftsmodelle etc. im Bereich der nachhaltigen Chemie. Eine Literaturrecherche wurde durchgeführt, die spezifische Herausforderungen und jüngste Innovationen in verschiedenen Anwendungsfeldern und Sektoren beleuchten: 1) Petro- und Basischemie, 2) Polymere, 3) Agrochemikalien (Pflanzenschutz), 4) Düngemittel, 5) Farbstoffe, Lacke, Pigmente und Klebstoffe, 6) Wasch-, Reinigungs- und Körperpflegemittel, 7) Chemiefasern, 8)Bauchemie, 9) Pharmazeutika und 10) Nanomaterialien. Weitere Kapitel beschreiben Förderprogramme und Auszeichnun-gen im Bereich der nachhaltigen Chemie in Europa und den USA, sowie Steuerinstrumente, Förder- und regulatorische Rahmenbedingungen am Beispiel Brasilien als Schwellenland. Zum Schluss wurden zwei Kapitel der Thematik der Nachhaltigkeitsbewertung gewidmet, in diesen werden Aspekte der Nachhaltigkeit anhand von zwei Beispielen diskutiert: a) Baumaterialien zur Wärmedämmung als Anwendungs-bereich und b) verschiedene Syntheserouten auf Basis fossiler und nachwachsender Rohstoffe zu Acrylsäure. Quelle: Foschungsbericht
Strukturdaten: Chemikalien und chemisch-pharmazeutische Industrie Die chemisch–pharmazeutische Industrie gehört in Deutschland zu den wichtigsten Wirtschaftszweigen. Gleichzeitig gehört sie auch zu den größten Energieverbrauchern und Erzeugern von Abwasser und gefährlichen Abfällen. Am Gesamtumsatz hatten die Produktionsbereiche „Chemische Grundstoffe“ und pharmazeutische Produkte den größten Anteil. Die chemisch-pharmazeutische Industrie in Deutschland Unternehmen, die in Deutschland Chemikalien oder aus ihnen chemische Produkte wie Arzneimittel, Biozide, Pflanzenschutzmittel , Chemiefasern, Farben, Kitte, Wasch- und Reinigungsmittel, Körperpflegemittel, Duftstoffe oder Seifen herstellen, setzten im Jahr 2023 mit diesen Produkten mehr als 225 Milliarden (Mrd.) Euro um. In der Chemie- und Pharmaindustrie arbeiteten 2023 etwa 480.000 Menschen. Das sind mehr als ein Prozent aller Erwerbstätigen. Damit gehört der Wirtschaftszweig zu den wichtigsten Industriesektoren in Deutschland (siehe Abb. „Beschäftigte im verarbeitenden Gewerbe in Deutschland 2023“ und Abb. „Umsatz im verarbeitenden Gewerbe in Deutschland 2023“). Zur chemisch-pharmazeutischen Industrie gehört der Bereich „Chemische Grundstoffe“, der im Jahr 2022 einen Umsatz von ca. 132 Mrd. Euro erwirtschaftete. Das entspricht mehr als 50 % des Gesamtumsatzes (siehe Abb. „Gesamtumsatz der chemisch-pharmazeutischen Industrie in Deutschland 2022“). Unter dem Industriezweig „Chemische Grundstoffe“ wird die Herstellung von anorganischen Grundstoffen wie Industriegasen und Düngemitteln, von organischen Grundstoffen und Chemikalien wie Petrochemikalien und Polymeren sowie von Fein- und Spezialchemikalien erfasst. Beschäftigte im verarbeitenden Gewerbe in Deutschland 2023 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Umsatz im verarbeitenden Gewerbe in Deutschland 2023 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Gesamtumsatz der chemischen Industrie in Deutschland 2022 Quelle: Verband der Chemischen Industrie Diagramm als PDF Diagramm als Excel mit Daten Chemisch-pharmazeutische Industrie belastet die Umwelt In der Chemie- und Pharmaindustrie fielen im Jahr 2022 über 5 % der gefährlichen Abfälle und 2016 fast zwölf Prozent des gesamten Abwassers der deutschen Wirtschaft an (siehe Abb. „Gefährliche Abfälle nach Erzeugergruppen in Deutschland 2022“ und Abb. „Abwasser nach Emittentengruppen in Deutschland 2016“). Die Branche hatte im Jahr 2021 einen hohen Ressourcenverbrauch und nutzte etwa 14 % der gesamten Primärenergie Deutschlands. Rund 4 % der Kohlendioxid-Emissionen stammten aus der Herstellung chemischer und pharmazeutischer Erzeugnisse (siehe Abb. „Primärenergieverbrauch nach Sektoren in Deutschland 2021“ und Abb. „Kohlendioxid-Emissionen nach Sektoren in Deutschland 2021). Gefährliche Abfälle nach Erzeugergruppen in Deutschland 2022 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Abwasser nach Emittentengruppen in Deutschland 2016 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Primärenergieverbrauch nach Sektoren in Deutschland 2021 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Kohlendioxid-Emissionen nach Sektoren in Deutschland 2021 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Chemikalien in der Europäischen Union Wie viele verschiedene Chemikalien verwendet werden, ist nicht bekannt. Im Einstufungs- und Kennzeichnungsverzeichnis ( C lassification L abeling & P ackaging-Verordnung) der Europäischen Chemikalienagentur (ECHA) sind 147.500 Stoffe verzeichnet. Dazu kommen noch Stoffe für die keine Meldepflicht ins Verzeichnis besteht (insbesondere nicht nach REACH registrierungspflichtige Stoffe soweit diese nicht als gefährlich im Sinne der CLP -VO einzustufen sind). Bis zum Jahr 2018 mussten Chemikalienhersteller und -importeure schrittweise fast all jene Chemikalien registrieren, von denen sie innerhalb der Europäischen Union (EU) mehr als eine Tonne jährlich herstellen oder in die EU einführen. Bis zum 30.06.2024 wurden mehr als 22.700 verschiedene Stoffe bei der ECHA in Helsinki registriert bzw. gelten als registriert. Deutsche Unternehmen haben davon 11.773 Stoffe (mit-)registriert (ECHA Registrierungsstatistik) .
Das Projekt "Teilvorhaben A" wird vom Umweltbundesamt gefördert und von Cluster Industrielle Biotechnologie 2021 e.V. durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben C" wird vom Umweltbundesamt gefördert und von VDEh-Betriebsforschungsinstitut GmbH durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben G" wird vom Umweltbundesamt gefördert und von ThyssenKrupp Steel Europe AG durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben B" wird vom Umweltbundesamt gefördert und von nova-Institut für politische und ökologische Innovation GmbH durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben E" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Bioverfahrenstechnik durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben D" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Das Projekt "Teilvorhaben F" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Biologie und Biotechnologie, Nachwuchsgruppe Mikrobielle Biotechnologie durchgeführt. Carbon monoxide (CO)-containing process gases, abundant in the BIG-Cluster region of Flanders, The Netherlands and North-Rhine Westphalia through numerous industrial sites, can be valuable feedstock streams for the biotechnical production of building blocks that are currently produced via petrochemical process routes. Mid-chain carbon compounds with multifunctional groups are of special industrial interest. Since they are conventionally generated from fossil resources, routes using renewable non-food feedstocks to provide such precursors would be a major step to establish a sustainable economy. Therefore, BioCOnversion aims at developing and implementing a sustainable process from CO to a defined polymer precursor by evaluating different technologies. An international consortium of industrial and academic partners join their high-level, multidisciplinary expertise to develop a process comprising the primary conversion of CO/syngas into an intermediate through gas fermentation and its enzymatic upgrading conversion to the defined plastic precursor. BioCOnversion supports the BIG-Cluster efforts to transform the trinational region of the German state of North Rhine-Westphalia, the Netherlands and the Belgian region of Flanders into a world-leader of circular economy.
Origin | Count |
---|---|
Bund | 28 |
Type | Count |
---|---|
Förderprogramm | 25 |
Text | 2 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 25 |
Language | Count |
---|---|
Deutsch | 26 |
Englisch | 10 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 19 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 27 |
Lebewesen & Lebensräume | 24 |
Luft | 14 |
Mensch & Umwelt | 28 |
Wasser | 13 |
Weitere | 28 |