API src

Found 22 results.

Related terms

Welche Umweltauswirkungen hat die petrothermale Geothermie?

Welche Umweltauswirkungen hat die petrothermale Geothermie? Bei petrothermaler Geothermie sind im Vergleich zu hydrothermaler Geothermie spezielle Techniken nötig, um die natürlich vorhandene Erdwärme nutzbar zu machen. Sind mit dem Einsatz dieser Methoden Risiken für die Umwelt verbunden? Diese Frage beantwortet erstmals ein Gutachten, das die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) für das Umweltbundesamt (UBA) erstellt hat. Mit den Schwerpunkten Grundwasserschutz und induzierte Seismizität sowie der besonderen Beachtung der Reservoirerschließung untersucht das wissenschaftliche Gutachten die Bereiche, bei denen in der tiefen Geothermie die größten Risiken vermutet werden. Vor allem in der Erschließungsphase bestehen Abweichungen zwischen petrothermaler Geothermie und der konventionellen, hydrothermalen Geothermie, die in der folgenden Betriebsphase jedoch wieder nach demselben Prinzip mit einem Wasserkreislauf Wärmeenergie aus dem Untergrund gewinnen. Herausgefunden haben die BGR-Forscher, dass Unterschiede bei der Bewertung der Umweltauswirkungen im Vergleich zur Anwendung ähnlicher Erschließungsmethoden bei der Förderung von Erdgas aus unkonventionellen Lagerstätten bestehen. Dies hatte das ⁠ UBA ⁠ in einer Reihe von Forschungsvorhaben untersuchen lassen.

Geologie/Erdwärme / Geothermie/Tiefe Geothermie: Tiefe Geothermie Genehmigungsverfahren, Hinweise zur Planung Geothermisches Potenzial: Projekt Hessen 3D Projekt: Erdwärmesonde Heubach Projekt: Überlandwerke Groß-Gerau GmbH Geothermie-Viewer Hessen

In der Arbeitshilfe der staatlichen Geologischen Dienste zur Tiefen Geothermie wird diese wie folgt definiert: "Geothermische Energie ist die in Form von Wärme gespeicherte Energie unterhalb der Oberfläche der festen Erde (VDI-RICHTLINIE 4640). Synonyme sind Erdwärme oder auch Geothermie." "Die tiefe Geothermie umfasst Systeme, bei denen die geothermische Energie über Tiefbohrungen erschlossen wird und deren Energie direkt (d.h. ohne Niveauanhebung) genutzt werden kann." Durch die Definition wird die tiefe Geothermie von der oberflächennahen Geothermie abgegrenzt, bei der die geothermische Energie dem oberflächennahen Bereich der Erde (meist bis 150 m, max. 400 m, vgl. VDI-Richtlinie 4640) entzogen wird, z.B. mit Erdwärmekollektoren, Erdwärmesonden, Grundwasserbohrungen oder Energiepfählen. Bei dieser Abgrenzung beginnt die tiefe Geothermie bei einer Tiefe von mehr als 400 m und einer Temperatur von mehr als 20 °C . Von tiefer Geothermie im eigentlichen Sinn sollte man aber erst bei Tiefen von über 1000 m und bei Temperaturen über 60 °C sprechen. Es sei aber darauf hingewiesen , dass die Übergänge zwischen den einzelnen Systemen fließend sind." Erdwärme steht generell überall und jederzeit zur Verfügung. Bei sachgerechter Bewirtschaftung ist sie praktisch unerschöpflich. Zu einem geringeren Teil (~30%) entstammt die Erdwärme der Gravitationswärme aus der Entstehung der Erde vor 4,5 Mrd. Jahren, der größere Teil (~70%) ist auf den radioaktiven Zerfall von Uran-, Thorium- und Kaliumisotopen in der Erdkruste zurückzuführen. Die Temperatur steigt mit der Tiefe im Mittel um 3 °C pro 100 m an. Die Temperaturzunahme pro Teufenabschnitt wird als Temperaturgradient bzw. geothermischer Gradient bezeichnet und in mK/m gemessen, was der Angabe °C pro km entspricht. Dieser Gradient wird durch den Wärmestrom aus der Tiefe an die Erdoberfläche verursacht. Die Wärmestromdichte beträgt in Deutschland durchschnittlich etwa 70 mW/m². Die Erschließung tief liegender Erdwärme ist mit Ausnahme tiefer Erdwärmesonden eine direkte Nutzung ohne Wärmepumpen, d.h. hier wird bei der sogenannten hydrothermalen Nutzung in großen Tiefen natürlich vorhandenes Thermalwasser oder bei petrothermalen Systemen (Hot Dry Rock -HDR-, auch als Enhanced Geothermal Systems, EGS, bezeichnet) künstlich eingebrachtes, aufgeheiztes Wasser an die Erdoberfläche gepumpt und dient sowohl der Stromerzeugung als auch der direkten Beheizung von Gebäuden (Fernwärme), siehe auch Faltblatt " Nutzung tiefer Geothermie in Hessen ". In weiten Teilen Hessens beträgt die durchschnittliche Untergrundtemperatur in 1000 m Tiefe 40-50 °C, während in der gleichen Tiefe im hessischen Teil des Oberrheingrabens (hessisches Ried) Temperaturen bis zu 90°C vorherrschen. In 3000 m Tiefe stehen durchschnittlichen Temperaturen von 110 bis 130°C im Normalfall 150°C und darüber im Oberrheingraben gegenüber. Der Oberrheingraben ist somit die einzige geologische Struktur in Hessen, in der nach jetzigem Wissensstand wegen eines erhöhten geothermischen Gradienten eine Nutzung der hydrothermalen Geothermie für die geothermische Stromerzeugung wirtschaftlich aussichtsreich ist, da hier die erforderlichen Temperaturen von mindestens 100°C bereits ab ca. 2000 m Tiefe erreichbar sind (siehe Karte geologische Strukturräume mit nachgewiesenem und vermutetem tiefengeothermischen Potenzial in Hessen ). Wichtig für die hydrothermale geothermische Nutzung ist jedoch nicht nur die Temperatur, sondern auch die natürliche Gebirgsdurchlässigkeit, damit eine möglichst hohe Förderrate ohne starke Absenkung des Wasserspiegels realisiert werden kann. Im Oberrheingraben sind relativ gute Durchlässigkeiten der in Tiefen ab 2000 m als Zielhorizont in Betracht kommenden Sedimente und Vulkanite des Rotliegend zu erwarten, so dass das Oberrheingebiet das höchste tiefengeothermische Potenzial in Hessen besitzt. Zudem ist hier die Datenlage durch zahlreiche Tiefbohrungen und Ergebnisse seismischer Untersuchungen aus der Erdöl-/Erdgaserschließung recht gut. Aber auch im übrigen Hessen ist eine tiefengeothermische Nutzung nicht ausgeschlossen. In Bereichen tektonischer Störungen können Thermalwässer in tief reichenden Zirkuationssystemen konvektiv aus der Tiefe aufsteigen und so zusätzlich zur reinen Wärmeleitung des Gesteins (Konduktion) höhere Untergrundtemperaturen als in ungestörten Gebieten bewirken. Die Karte zeigt, dass die Thermalwasservorkommen entlang des Taunus z.B. an die Taunussüdrandstörung und ihre Querstörungen gebunden sind. Im Bereich der Niederhessischen Senke gibt es trotz sehr spärlicher Daten Anhaltspunkte für Thermalwasseraufstiege, so beispielsweise in Bad Salzhausen. Auch hier können tief reichende, teilweise junge aktive Störungssysteme ähnlich wie im Oberrheingraben Aufstiegswege für Thermalwässer bilden. Die Regionen von Vogelsberg und Westerwald-Dillmulde können theoretisch ebenfalls ein erhöhtes Potenzial aufweisen. Tertiärer Vulkanismus, CO2-Aufstiege und die Vergitterung von Störungssystemen sind Anhaltspunkte hierfür. Allerdings ist hier die Datenlage noch schlechter als in der Niederhessischen Senke. Schließlich kommt für tiefe Bereiche mit kristallinen Gesteinen (Granite, Gneise), die primär nur sehr wenig wasserwegsam sind, in weiterer Zukunft auch das bis jetzt noch nicht großtechnisch etablierte HDR (Hot Dry Rock)-Verfahren in Betracht. Bei entsprechenden Bohrtiefen (ab ca. 4.500 m) können künstliche Rissysteme im Gestein durch mit hohem Druck eingepresstes Wasser ("hydraulic fracturing", "fracing") erzeugt werden und ein tiefengeothermisches Reservoir schaffen. In dem durch das HMUKLV beauftragten Forschungs- und Entwicklungsprojekt " 3-D-Modell der geothermischen Tiefenpotenziale in Hessen " wird vom Institut für angewandte Geowissenschaften IAG der TU Darmstadt und dem HLNUG gemeinsam einer detailliertere Potenzialabschätzung vorgenommen. Nachweisdaten und Informationen zum Zugang zu Detaildaten der hessischen Tiefbohrungen erhalten Sie im Rahmen des Verbundes Kohlenwasserstoffgeologie über den NIBIS-Kartenserver des Landesamtes für Bergbau, Geologie und Energie Niedersachsen (LBEG). Die KW-Bohrungsdatenbank des LBEG enthält Titel- und Fachdaten von über 30.000 Bohrlöchern. Neben KW-Explorations- und Produktionsbohrungen sind darin auch zu anderen Zwecken niedergebrachte Tiefbohrungen sowie Versenkbohrungen enthalten. Im NIBIS-Kartenserver wählen Sie als Grundkarte am besten die „OpenStreetMap Welt farbig“ und zoomen mit Mausrad nach vorne das Gebiet von Hessen heran. Durch Klick auf die Bohrung erhalten Sie Informationen. Die Hessische Energiepolitik hat sich nach Angaben des Hessischen Ministeriums für Landwirtschaft und Umwelt, Weinbau, Forsten, Jagd und Heimat (HMLU) zwei konkrete Ziele gesetzt: den Endenergieverbrauch bis 2020 um ein Fünftel zu senken und zwar durch Minimierung des Primärenergieeinsatzes und die rationelle Energienutzung und den Anteil an erneuerbaren Energien am Endenergieverbrauch erheblich zu erhöhen. Die erneuerbaren Energien sollen bis zum Jahr 2020 einen Anteil von 20 % am Endenergieverbrauch (ohne den Verkehrssektor) einnehmen. Zur Steigerung des Anteils der erneuerbaren Energien ist eine stärkere Nutzung der Solarenergie, der Biomasse, der Wasser- und Windkraft sowie der Erdwärme erforderlich. Um das Ziel "20 Prozent aus erneuerbaren Energien" zu erreichen, müssen 21 Terawattstunden pro Jahr aus Sonne, Wind, Biomasse, Wasserkraft und Geothermie gewonnen werden. Dabei liegt das Ausbauziel für die Geothermie bei 1 TWh/a. Bereits im Jahr 2005 stellte der hessische Landtag fest, dass insbesondere im Bereich des hessischen Oberrheingrabens das Potenzial besteht, um mit Tiefer Geothermie Strom erzeugen zu können und forderte die Landesregierung auf, die Potenziale der Geothermie im hessischen Oberrheingraben systematisch zu erfassen und gemeinsam mit den relevanten Akteuren in Wissenschaft und Wirtschaft der benachbarten Bundesländer und des Bundes ein Konzept zur Nutzung der Geothermie im Oberrheingraben zu erarbeiten. Grundlage für diese Einschätzung war der Sachstandsbericht des Bundestags-Ausschusses für Bildung, Forschung und Technikfolgenabschätzung zu den "Möglichkeiten geothermischer Stromerzeugung in Deutschland" vom Februar 2003 (TAB-Arbeitsbericht Nr. 84, Paschen et al. 2003). Das daraufhin gegründete hessische "Kompetenznetzwerk Tiefe Geothermie" (mit Mitgliedern aus dem Wirtschafts-und Umweltressort, dem HLNUG, der Bergbehörde beim RP Darmstadt, HessenEnergie sowie dem Institut für Angewandte Geowissenschaften der TU Darmstadt und der Hochschule Darmstadt) gelangte zur Überzeugung, dass nicht nur der Oberrheingraben, sondern ganz Hessen in die Betrachtungen einzubeziehen sei und dass in ganz Hessen eine Potenzialbewertung sowohl hinsichtlich der Stromerzeugung mit Tiefer Geothermie, als auch der Wärmenutzung unter intensiver Auswertung vorhandener und neu zu erhebender Daten sinnvoll sei. Hierbei sollten alle Nutzungsarten (hydrothermale Nutzung, petrothermale Nutzung und tiefe Erdwärmesonden) berücksichtigt werden. Die auf diesen Seiten dargestellten Informationen sind ein Resultat dieser Auswertungen. Zur Information und dem Erfahrungsaustausch von Fachleuten, der Öffentlichkeit und von Entscheidungsträgern aus Politik und Wirtschaft findet seit 2006 jährlich ein Tiefengeothermieforum mit begleitender Fachausstellung statt. Bei der Planung von Tiefengeothermieprojekten ist es unerlässlich, schon in der Frühphase ein Konzept zu der geplanten Geothermie-Nutzung, wie z. B. Zielhorizont, Erschließungsart, Stromgewinnung, Wärme-/Kältegewinnung etc., zu den möglichen Abnehmern und zur benötigten Infrastruktur zu erstellen. Mehr Das Modell soll anschauliche Informationen zum tiefengeothermischen Potenzial und zur Ausbildung des tieferen Untergrundes von Hessen als Information für die Öffentlichkeit, für politische Entscheidungsträger, für Investoren aus der Wirtschaft und insbesondere in der Frühphase der Planung tiefengeothermischer Projekte auch für Fachplaner bereitstellen. Mehr In Groß-Umstadt-Heubach wird seit 2011 ein vom Hessischen Landwirtschaftsministerium (HMLU) gefördertes Forschungs- und Entwicklungsprojekt der HEAG Südhessische Energie AG (HSE) zur Nutzung der Geothermie mit einer fast 800 m tiefen Erdwärmesonde betrieben. Mehr Seit dem Jahr 2007 betrieben die Überlandwerke Groß-Gerau GmbH (ÜWG) ein Projekt zur Gewinnung von Strom und Wärme aus einer bis zu 4.000 m tiefen Dublette (Förder- und Injektionsbohrung), die das hydrothermale Reservoir im Rotliegenden erschließen sollte. Mehr Die Kartendarstellungen für die Tiefengeothermie beruhen auf dem " 3-D-Modell der geothermischen Tiefenpotenziale in Hessen" ("Hessen 3 D") , das in Zusammenarbeit von HLNUG und TU Darmstadt (Institut für Angewandte Geowissenschaften), mit Förderung des hessischen Landwirtschaftsministeriums (HMLU) erstellt wurde. Folgende Themenlayer stehen zur Tiefen Geothermie zur Verfügung: Durch Klick auf das Kartensymbol wird die Karte aufgerufen. Lage von Vertikalschnitten mit Geologie sowie hydrothermalem und petrothermalem Potenzial. Durch Klick auf die Schnittlinie können die Vertikalschnitte abgerufen werden. Mehrere Themenlayer mit auf unterschiedliche Tiefenniveaus bezogenen Horizontalschnitten zur Geologie (geologischen Übersichtskarten) Mehrere Themenlayer mit den Oberflächen ("Top") stratigrafischer Einheiten, die die Basis für die geothermische Potenzialermittlung im 3-D-Modell darstellen. Mehrere Themenlayer mit flächenhaften Darstellungen und Isolinien der Temperatur in verschiedenen Tiefenniveaus Mehrere Themenlayer mit flächenhaften Darstellungen des hydrothermalen und des petrothermalen Potenzials in verschiedenen Tiefenniveaus Dr. Sven Rumohr Tel.: 0611-6939 727 Dr. Benjamin Homuth Tel. 0611-6939 303 Downloads und Links FAQ zum Thema Erdwärme/Geothermie

Bochum Graduate School Applied Research on Enhanced Geothermal Energy Systems (AGES)

Das Projekt "Bochum Graduate School Applied Research on Enhanced Geothermal Energy Systems (AGES)" wird vom Umweltbundesamt gefördert und von Hochschule Bochum, Bochum University of Applied Sciences, Institut für Wasser und Umwelt, Labor für Geothermie und Umwelttechnik durchgeführt. Die Graduiertenschule AGES wird gemeinsam von der Hochschule Bochum und der Ruhr-Universität Bochum getragen. Die Ziele liegen auf den Ebenen: - Verzahnung von Grundlagen- und der Anwendungsforschung; - Entwicklung von Konzepten und Technologien zur Gewinnung und Nutzung von Erdwärme aus petrothermalen Reservoirs; - Technologien zur Versorgung von Metropolregionen mit Strom, Wärme und Kälte aus Tiefengeothermie - Akzeptanz- und Nachhaltigkeitsforschung für geothermische Infrastrukturprojekte.

Entwicklung und Bau eines rotierenden, hydraulischen DTH Hammer Bohrsystems für (geothermische) Tiefenbohrungen mittels Coiled Tubing oder Bohrgestänge

Das Projekt "Entwicklung und Bau eines rotierenden, hydraulischen DTH Hammer Bohrsystems für (geothermische) Tiefenbohrungen mittels Coiled Tubing oder Bohrgestänge" wird vom Umweltbundesamt gefördert und von Hochschule Bochum, Bochum University of Applied Sciences, Institut für Wasser und Umwelt, Labor für Geothermie und Umwelttechnik durchgeführt. 1.Vorhaben: Ohne den massiven Ausbau der petrothermalen Geothermie können die politischen Ausbauziele des Landes und der EU der Erneuerbaren Energien nicht realisiert werden. Deshalb sind kleinräumige, gut kontrollierbare EGS-Verfahren zu entwickeln. Dazu bedarf es neuer, innovativer Bohrverfahren, welche leistungsstark, sicher und zielgerichtet arbeiten können, um diese Erschließungstechniken der Reservoire zu optimieren. Die bisher verfügbaren Bohrwerkzeuge der Öl- Und Gasindustrie sind zu langsam und haben schlechte Standzeiten (Bohrungen im Festgestein). Die DTH Hammerbohrtechnik, welche seit einigen Jahrzehnten der verbreitete Standard ist für oberflächennahe Bohrungen (kleiner als ca. 300 m), bietet hier von der Bohrgeschwindigkeit und Effizienz ganz andere Möglichkeiten. Diese DTH Hammertechnik muss aber a.) tiefen- und geologieunabhängig sein, d.h. bis in große Tiefen effizient arbeiten, und b.) an Coiled Tubing Bohranlagen funktionieren. Da dies physikalisch nicht mit einem luftbetriebenen Hammer funktionieren kann, ist die Entwicklung der DTH Wasserhammerbohrtechnik der Schlüssel zu den tiefen, geothermischen Lagerstätten der Zukunft. 2.Arbeitsplan: - Bohrdaten von bestehenden DTH Wasserhämmern auswerten - Neukonstruktion / Umbau / Ankopplung Mudmotor - Optimierung DTH Mudhammer - Kopplung Rotationseinheit - Auslegung Rotierender DTH Mudhammer - Entwicklung Bohrkrone - Abschließende Tests - Kleinserie rotierender CT-GeoHammer

Geologische und verfahrenstechnische Möglichkeiten der Erdwärmenutzung am Standort der Medizinischen Hochschule Hannover (MHH)

Das Projekt "Geologische und verfahrenstechnische Möglichkeiten der Erdwärmenutzung am Standort der Medizinischen Hochschule Hannover (MHH)" wird vom Umweltbundesamt gefördert und von Hochschule Bochum, Bochum University of Applied Sciences, Zentrum für Geothermie und Zukunftsenergien durchgeführt. Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.

Teilprojekt D Erstellung eines Systemsimulationsmodells (=integratives Gesamtmodell) als Werkzeug für Risikoanalysen

Das Projekt "Teilprojekt D Erstellung eines Systemsimulationsmodells (=integratives Gesamtmodell) als Werkzeug für Risikoanalysen" wird vom Umweltbundesamt gefördert und von G.E.O.S. Ingenieurgesellschaft mbH durchgeführt. Eine Fündigkeit bei geothermischen Tiefbohrungen ist gegeben, wenn die notwendige Mindesttemperatur und -schüttung realisiert werden können. Das Fündigkeitsrisiko lässt sich unterscheiden in einen geologisch und einen durch den Untersuchungsgrad bedingten Anteil. Das Teilvorhaben verfolgt zwei Ziele, die Überarbeitung/Erweiterung der Methoden zur Risikobewertung aus Sicht der Statistik sowie die Entwicklung eines adäquaten mathematischen Verfahrens zur Feinstrukturmodellierung. Durch die Verknüpfung dieser Arbeiten und der anderen Teilvorhaben (LIAG, GEOS) soll nicht nur für zwei konkrete hydrothermale Projekte, sondern auch für überregionale Projekte die Möglichkeit geschaffen werden, in einem integrativen Modell (Softwarepaket) geeignete Kriterien für die Durchführung weiterer Untersuchungen abzuleiten. Langfristig sind hierbei petrothermale Systeme von besonderem Interesse. Die gegenwärtig für die Quantifizierung des Fündigkeitsrisikos verwendete Methode des LIAG ist der Ausgangspunkt. Ihre wesentlichen Elemente werden auf ihre mathematische Schlüsselfunktion hin diskutiert. Anschließend wird sie überarbeitet und um statistische Komponenten erweitert. Aufbauend darauf wird ein Konzept entwickelt, das den Untersuchungsgrad in die Bewertung eines Projekts einbezieht. In einem Auswertemechanismus werden dann neben Temperatur- und Schüttungsdaten weitere Informationen aus einem zu entwickelnden seismischen Postprocessing mittels einer Multiskalen-Analyse eingebracht werden.

Prognose und Monitoring natürlicher Radionuklide in Anlagen der tiefen Geothermie

Das Projekt "Prognose und Monitoring natürlicher Radionuklide in Anlagen der tiefen Geothermie" wird vom Umweltbundesamt gefördert und von Strahlenschutz, Analytik & Entsorgung Roßendorf e.V. durchgeführt. Prognose und Monitoring natürlicher Radionuklide in Anlagen der tiefen Geothermie In wachsendem Maße besteht für Anlagen der tiefen Geothermie das Interesse, die Radioaktivität in hochsalinen Thermalwässern bereits in der Planungsphase einer Anlage zu berücksichtigen und im Rahmen der Prozessüberwachung diesen Parameter als Messgröße kontinuierlich verfügbar zu haben. Zu diesem Zweck wird einerseits ein Werkzeug geschaffen, um die Radionuklidkonzentrationen von Fluiden aus geologischen Parametern der verwendeten tiefen Grundwasserleiter abzuleiten. Dazu wird auf der Basis einer ausführlichen Datensammlung das im Vorgängerprojekt entwickelte Modell der Radionuklidfreisetzung durch Alpha-Rückstoß validiert und gegebenenfalls angepasst. Die Methodik der Radionuklidvorhersage wird so gestaltet, dass sie sowohl für hydrothermale als auch für petrothermale Aquifere geeignet ist. Andererseits wird ein Sensorsystem zum Einsatz in Geothermieanlagen entwickelt, das das Gamma-Strahlungsfeld in unmittelbarer Nähe von Anlagenkomponenten erfasst und kontinuierlich aufzeichnet. Kommerziell verfügbare Detektoren werden an die Gegebenheiten von Geothermieanlagen angepasst, kalibriert und im Anlagenbetrieb getestet. Das System wird so gestaltet, dass das Messsignal in die Prozessüberwachung der Anlagen eingebunden werden kann.

Vorhaben: Bohrlochintegrität und Fluidleckage

Das Projekt "Vorhaben: Bohrlochintegrität und Fluidleckage" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Ziel des Verbundprojekts GEOSMART ist es, eine transparente und standortunabhängige Methode zur Risikobewertung von hydrothermalen und petrothermalen Tiefengeothermieprojekten sowie von Speicherprojekten auf Grundlage einer modularen Simulation des Gesamtsystems zu entwickeln. Üblicherweise wird bei Risikoanalysen zunächst eine Reihe konzeptioneller Vereinfachungen vorgenommen, um komplexe Prozesse im Rahmen probabilistischer Ansätze beschreiben zu können. Für das Projekt GEOSMART wurde ein entgegengesetzter Ansatz gewählt. Es ist beabsichtigt, die erforderlichen Prozessmodelle zunächst entsprechend dem aktuellen Stand von Wissenschaft und Technik einschließlich der Prozesskopplung zu entwickeln. Im Anschluss werden für die Prozessmodelle mittels Sensitivitätsanalysen die Schlüsselparameter identifiziert, die den größten Einfluss auf die einzelnen Risikokomponenten haben. Die Abhängigkeit der Risikokomponenten von den Schlüsselparametern wird dann in Form von Wertetabellen bzw. Antwortfunktionen abgebildet und an ein zentrales Systemsimulationsmodell übergeben, mit dem die Wahrscheinlichkeitsverteilung für die einzelnen Risikokomponenten berechnet wird. Die Schnittstelle über die Wertetabellen bzw. Antwortfunktionen stellt die wesentliche Vereinfachung dar und ermöglicht eine probabilistische Simulation komplexer Modelle. Der entscheidende Vorteil gegenüber herkömmlichen Risikoanalysen besteht darin, dass die relevanten Prozesse nicht auf Grundlage stark vereinfachter Modelle abgebildet werden, was die Genauigkeit von Prognosen deutlich erhöht. Das Projekt GEOSMART gliedert sich in fünf Arbeitspakete. Im Rahmen des ersten Arbeitspaketes wird mit Hilfe des Programmpaketes GoldSim ein zentrales Systemsimulationsmodell entwickelt, an das sämtliche Prozessmodelle über Schnittstellen gekoppelt werden. Das zweite Arbeitspaket befasst sich mit einem Prozessmodell zur Integrität des Deckgebirges und den Auswirkungen von unkontrolliertem Risswachstum im Rahmen der hydraulischen Stimulation. Hierfür sind gekoppelte strömungsmechanische Simulationen vorgesehen. Im dritten Arbeitspaket wird die Migration von Fluiden aus einem Reservoir über geologische Schwächezonen betrachtet. Dabei wird mit dem Prozessmodell insbesondere der Stoff- und Wärmetransport quantifiziert. Änderungen des Spannungsfeldes und die dadurch möglicherweise induzierte Seismizität stehen im Zentrum des vierten Arbeitspaketes. Es ist geplant, mit einem Prozessmodell Wertetabellen für die Eintrittswahrscheinlichkeit solcher Ereignisse und Erschütterungskarten zu liefern. Im fünften Arbeitspaket wird die Integrität von Bohrungssystemen untersucht. Unter Berücksichtigung aller relevanten Prozesse erfolgt die Quantifizierung von Fluidleckagen für das Gesamtsystem Bohrung mithilfe gekoppelter numerischer Simulationen. (Text gekürzt)

Teilprojekt A Seismisches Postprocessing als weitere Informationsquelle & koordinierte Softwareentwicklung

Das Projekt "Teilprojekt A Seismisches Postprocessing als weitere Informationsquelle & koordinierte Softwareentwicklung" wird vom Umweltbundesamt gefördert und von Technische Universität Kaiserslautern, Fachbereich Mathematik, Arbeitsgruppe Geomathematik durchgeführt. Eine Fündigkeit bei geothermischen Tiefbohrungen ist gegeben, wenn die notwendige Mindesttemperatur und -schüttung realisiert werden können. Das Fündigkeitsrisiko lässt sich unterscheiden in einen geologisch und einen durch den Untersuchungsgrad bedingten Anteil. Das Gesamtvorhaben verfolgt zwei Ziele, die Überarbeitung/Erweiterung der Methoden zur Risikobewertung aus Sicht der Statistik (FhG, LIAG) sowie die Entwicklung eines adäquaten mathematischen Verfahrens zur Feinstrukturmodellierung (TUKL). Durch die Verknüpfung dieser Arbeiten und der anderen Teilvorhaben (LIAG, FhG, GEOS) soll nicht nur für zwei konkrete hydrothermale Projekte (GEG), sondern auch für überregionale Projekte (u.a. GEG, MR) die Möglichkeit geschaffen werden, in einem integrativen Modell (Softwarepaket) geeignete Kriterien für die Durchführung weiterer Untersuchungen abzuleiten. Langfristig sind hierbei petrothermale Systeme von besonderem Interesse. Aufbauend auf der statistischen Erweiterung des Konzeptes des LIAG (durchgeführt von FhG koordiniert mit LIAG) wird ein Konzept entwickelt, das den Untersuchungsgrad in die Bewertung eines Projektes einbezieht. In einem Auswertemechanismus werden dann neben Temperatur- und Schüttungsdaten weitere Informationen aus einem zu entwickelnden seismischen Postprocessing mittels einer Multiskalen-Analyse eingebracht werden.

Teilprojekt E: Geothermische Reservoir-Charakterisierung: Parameter, Geometrien und Modellansätze

Das Projekt "Teilprojekt E: Geothermische Reservoir-Charakterisierung: Parameter, Geometrien und Modellansätze" wird vom Umweltbundesamt gefördert und von Geophysica Beratungsgesellschaft mbH durchgeführt. Die Geophysica wird in diesem Projekt die Erfassung und Auswertung von geologischen und petrophysikalischen Daten an den ausgewählten Standorten übernehmen und die im Vorgängerprojekt MeProRisk entwickelten Methoden zur Ableitung geothermisch relevanter Eingangsparameter einsetzen. Weiterhin soll in Kombination mit der Charakterisierung der petrophysikalischen Eigenschaften ein modellhafter Ansatz hinsichtlich der Abbildung von geologisch bedingten Heterogenitäten im Reservoir entwickelt werden. (1) Zusammenstellung und Bewertung der Basisdaten durch Auswertung von sämtlich zur Verfügung stehenden Informationsquellen. (2) Zusammenführung der thermophysikalisch relevanten Daten aus den beteiligten Projekten (Pawsey: Australien, Murci und Guardia Lombardei: Italien) als Basis für die Machbarkeitsstudie. (3) Systematische Anwendung der in MeProRisk I erarbeiteten Methoden zur Ableitung relevanter Parameter und deren Statistik. (4) Untersuchung der Veränderung von thermischen und hydraulischen Eigenschaften in Hinblick auf verschiedene Fazien, wie z.B. fluviatile Systeme. Dazu soll ein Modellansatz zur räumlichen Abbildung von Geometrien (z.B. Flusssysteme, Deltastrukturen, Kluftsysteme) entwickelt werden, welcher in den Simulationscode implementiert werden kann. (5) Tests und Sensitivitätsstudien mit den im vorangegangenen Projekt und hier weiter zu entwickelnden Programmwerkzeugen unter Einbeziehung aller vorhandenen Daten.

1 2 3