API src

Found 1130 results.

Related terms

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Wechselwirkungen zwischen Aerosolen und niedrigen Wolken verstehen mit maschinellem Multi-Target-Lernen

Niedrige Wolken der marinen Grenzschicht kühlen das Erdsystem und spielen somit eine entscheidende Rolle für die Energiebilanz der Erde. Die physikalischen Eigenschaften dieser Wolken werden von Aerosolen beeinflusst. Veränderungen in der Zusammensetzung oder Konzentration atmosphärischer Aerosole können daher die Strahlungswirkung und somit das Kühlungspotential dieser Wolken verändern. Die Quantifizierung der Auswirkungen atmosphärischer Aerosole auf marine Grenzschichtwolken mit Beobachtungsdaten ist eine große Herausforderung, da viele Prozesse gleichzeitig wirken, statistisch schwer zu trennen sind und Wolken gegen Aerosoleinflüsse “gepuffert” sein können. Globale Klimamodelle können diese Prozesse nicht auflösen, sodass sie über Parametrisierungen festgeschrieben werden müssen, welche wiederum mit Unsicherheiten belastet sind. Durch diese Probleme in der Auswertung von Beobachtungen sowie in Modellen ist die Quantifizierung von Aerosol-Wolken-Interaktionen weiterhin eine der größten Unsicherheiten der Klimawissenschaften, was die Abschätzung der Klimasensitivität erschwert.Das beantragte Forschungsprojekt adressiert diese Herausforderungen und wird die Wirkung von Aerosolen auf marine Grenzschichtbewökung mit globalen Beobachtungsdaten quantifizieren und die Parameterisierungen dieser Prozesse in globalen Klimamodellen evaluieren. In aktuellen Studien haben statistische Modelle aus dem Bereich des maschinellen Lernens geholfen, das Aerosol-Wolken-Meteorologie-System besser zu verstehen und zu quantifizieren, da sie in der Lage sind, Effekte von Aerosolen von anderen atmosphärischen Größen zu isolieren. Das beantragte Forschungsprojekt wird sich auf maschinelle Lernmethoden stützen, welche zusätzlich in der Lage sind, alle relevanten Wolkeneigenschaften gleichzeitig vorherzusagen, und damit mögliche Puffer explizit berücksichtigen und quantifizieren können. Die statistischen Modelle werden verwendet, um Zusammenhänge und Prozesse in globalen Beobachtungsdaten und dem Output globaler Klimamodelle zu analysieren. Auf diese Weise kann eine prozessorientierte Evaluierung von Modellparameterisierungen erreicht werden, die sich deutlich von dem üblichen Vergleich klimatologisch gemittelter Wolkenmuster abhebt. So können Modellparametrisierungen beobachtungsgestützt eingegrenzt, und der Strahlungsantrieb durch Wechselwirkungen zwischen Aerosolen und marinen Grenzschichtwolken quantifiziert werden.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Ein kostengünstiges mechanisch gesteuertes polarimetrisches Phased-Array Doppler Wetterradar, Phase 2

Im Projekt "Ein kostengünstiges mechanisch gesteuertes polarimetrisches Phased-Array Doppler Wetterradar, Phase 2" entwickelt das Fraunhofer FHR in Kooperation mit dem Institut für Geowissenschaften, Abteilung Meteorologie der Uni Bonn einen Prototyp eines Phased-Array-Radars (PAR) auf Basis einer AESA-Antennenapertur (Active Electronically Scanned Array), mit dem Ziel innerhalb einer Minute eine volumetrische Wetterkarte zu erstellen. Ein PAR-Wetterradar ist optimal geeignet, um die zeitliche Auflösung durch elektronische Strahlschwenkung zu verbessern. Aus Kostengründen konnte sich diese Technologie bisher aber nicht gegenüber Reflektorsystemen durchsetzen. In Phase I wird eine neuartige Antennenlösung zur Entkopplung von Strahlschwenkung und Fokussierung untersucht, um so Komplexität und Kosten zu minimieren. Anstatt wie üblich die Apertur sowohl für die Strahlschwenkung als auch für die Fokussierung zu verwenden, fokussiert ein Parabolzylinder im Azimut, während ein kompakter PAR in seiner Brennlinie die elektronische Schwenkung sowie die Fokussierung in der Höhe ermöglicht. Zur Erzeugung polarimetrischer Momente hoher Qualität wurde eine spezielle aktive Antennenansteuerung entwickelt, um eine Unterdrückung der Kreuzpolarisation von über 40 dB in Broadside und über 30 dB bei einer Strahlneigung von 45° zu erreichen.In Phase II wird die Implementierung der Strahlschwenkung zur Fertigstellung und operationalen Bewertung des Prototyps angestrebt. Im Wesentlichen sollen Strahlbeschleunigungstechniken zur schnellen Erzeugung volumetrischer Wetterkarten untersucht werden, da die einfache Verkürzung der Verweilzeit (Dwell Time) zu größeren statistischen Unsicherheiten bei den polarimetrischen Momenten führen würde. Mit Beam Multiplexing (BMX, sequentielle Übertragung von Impulspaaren entlang verschiedener Richtungen) sollen die Dekorrelation von Stichproben erhöht und schnellere Scans bei gleichbleibender Datenqualität erzielt werden. Darüber hinaus soll mit einem herkömmlichen Step-Scan-Verfahren das BMX für die unteren Elevationen in Abhängigkeit von der spezifischen Wetterereignisstatistik adaptiv ergänzt werden. Die sorgfältige Realisierung eines solchen adaptiven Scannens wird als wesentlicher Schritt angesehen, um das Scan-Beschleunigungspotential von PARs voll auszuschöpfen und ein automatisiertes priorisiertes Tracking potenziell gefährlicher Wetterereignisse zu erreichen.Die Universität Bonn wird die Messungen der überlappenden X-Band-Forschungsradare für eine eingehende Bewertung des neuen PAR und seiner polarimetrischen Fähigkeiten nutzen. Darüber hinaus ermöglicht die neue Technologie die Überwachung der vorkonvektiven Umgebung mit einer höheren zeitlichen Auflösung, was wiederum die Fähigkeit verbessert, Wasserdampffelder aus vom Radar erfassten Änderungen des Brechungsindex abzuleiten. Wir werden die neuen Fähigkeiten bewerten und somit zum fünften Ziel des SPP beitragen, d.h. zur radarbasierten Erfassung der Konvektionsinitiierung.

GPS-RTK gesteuertes Säen, Pflanzen und Hacken für 'Position Farming' auf gemeinsamer Datenbasis mit PosiSeed - PosiPlant - PosiWeed (PosiFarm), Teilprojekt D

Analysis of dairy production systems differentiated by location

Dairy farming across Germany displays diverse production systems. Factor endowment, management, technology adoption as well as competitive dynamics in the local or regional land, agribusiness and dairy processing sectors contribute to this differentiation on farm level. These differences impact on the ability of dairy farms and regional dairy production systems to successfully respond to pressures arising from future market and policy changes. The overall objective of the research activities of which this project is a part of, is to develop a thorough understanding of the processes that govern the spatial dynamics of dairy farm development in different regions in Germany. The central hypothesis of this research project is that management system and technological choices differ systematically across local production and market conditions. The empirical approach will focus on the estimation of farm specific nonparametric cost functions for dairy farms located in across Germany differentiated by time and location. A spatially differentiated data base with information on input use, resource availability, as well as local market conditions for land and output markets will be compiled. The nonparametric approach is specifically suited to disclose a more accurate representation of dairy production system heterogeneity across locations and time compared to parametric concepts as it provides the necessary flexibility to accommodate non-linearities relevant for a wide domain of explanatory variables. The methodology employed goes beyond the state of the art of the literature as it combines kernel density estimation with a Bayesian sampling approach to provide theory consistent parameters for each farm in the data sample.The specific methodological hypothesis is that the nonparametric approach is superior to current parametric techniques and this hypothesis is tested using statistical model evaluation. Regarding the farm management and technological choices, we hypothesize that land suitability for feed production determines the farm intensity of dairy production and thus management and technological choices. With respect to the ability of farms to successfully respond to market pressures we hypothesize that farms at the upper and lower tail of the intensity distribution both can generate positive returns from dairy production. These last two hypotheses will be tested using the estimated spatially differentiated farm specific costs and marginal costs.The expected outcomes are of relevance for the agricultural sector and the food supply chain economy as a whole as fundamental market structure changes in the dairy sector are ongoing due to the abolition of the quota regulation in the years 2014/2015. Thus, exact knowledge about differences and development of dairy cost heterogeneity of farms within and between regions are an important factor for the actors involved in the market as well as the political support of this process.

Genetische Vielfalt

Eine hohe genetische Vielfalt ist die Voraussetzung für die Stabilität von Populationen und die Anpassungsfähigkeit von Tier- und Pflanzenarten an sich verändernde Umweltbedingungen wie dem Klimawandel. Durch den gezielten Schutz von Lebensräumen, den Einsatz gebietseigener Pflanzen oder durch die Förderung historischer Nutzungsformen, werden reich strukturierte Lebensräume erhalten, die eine genetisch vielfältige natürliche Flora und Fauna beheimaten. Darüber hinaus gelten verschiedene Vorhaben auch dem Erhalt historischer Haustierrassen sowie alter Nutz- und Zierpflanzenarten. Bild: Grün Berlin / Konstantin Börner Tempelhofer Feld Mit dem ehemaligen Flughafengelände hat Berlin eine einzigartige Wiesenlandschaft gewonnen. Für die Menschen und viele Tier- und Pflanzenarten ist das Wiesenmeer ein Rückzugsraum mitten in der Stadt. Teil der biodiversitätsfördernden Pflege ist eine Beweidung mit alten Nutztierrassen. Tempelhofer Feld Weitere Informationen Bild: Simaber Wasserbüffel pflegen Feuchtgebiete Wasserbüffel sind ideal, um nasse Naturlandschaften zu pflegen. Seit einiger Zeit tun sie das auch in Berlin. Uns Menschen versprechen die gutmütigen Tiere dabei ein Naturerlebnis besonderer Art. Wasserbüffel pflegen Feuchtgebiete Weitere Informationen Bild: Lena Flamm Nutztierrassen pflegen artenreiche Offenlandschaften Berlins Offenlandschaften sind äußerst artenreich. Bei ihrer Pflege helfen historische Nutztierrassen. Je nach Standort kommen andere Arten und Rassen zum Einsatz. Die neue Einsatzmöglichkeit hilft, die alten Nutz- und Haustierrassen zu erhalten. Nutztierrassen pflegen artenreiche Offenlandschaften Weitere Informationen Bild: bgmr Landschaftsarchitekten Verwendung gebietseigener Pflanzen Regiosaatgut besteht aus Samen, die von gebietseigenen Pflanzen gewonnen wird. Seine Verwendung erhält die genetische Vielfalt dieser Pflanzen und fördert ihr Vorkommen. Gleiches gilt für Jungpflanzen, die aus der Vermehrung gebietseigener Stauden und Gehölze stammen. Verwendung gebietseigener Pflanzen Weitere Informationen Bild: Stiftung Naturschutz Berlin / Justus Meißner Koordinierungsstelle Fauna und Florenschutz Um bedrohte Arten zu schützen, muss erst einmal bekannt sein, wo es sie noch gibt. In Berlin kümmern sich darum zwei Koordinierungsstellen – eine für Tiere, eine für Pflanzen. Sie dokumentieren seltene Arten, fördern sie – und werden dabei von vielen Berlinerinnen und Berlinern unterstützt. Koordinierungsstelle Fauna und Florenschutz Weitere Informationen Bild: Christo Libuda (Lichtschwärmer) Botanische Anlagen Botanische Anlagen bewahren das globale Gedächtnis der Biodiversität. Auch in Berlin tragen sie zum Erhalt der genetischen Vielfalt bei. Zugleich sind sie Brennpunkte der Forschung und Umweltbildung zu diesem Thema. Botanische Anlagen Weitere Informationen Bild: Anika Dreilich Urbanität und Vielfalt Die Region Berlin/Potsdam ist einer von drei Standorten des Projekts Urbanität und Vielfalt. Die Idee: Botanische Anlagen vermehren seltene Wildpflanzen. Bürgerinnen und Bürgern pflanzen diese dann in der Stadt aus oder geben ihnen auf ihrem Balkon und im eigenen Garten eine neue Heimat. Urbanität und Vielfalt Weitere Informationen

Besamungsstationen mit Zulassung nach Tierzuchtgesetz

Betreiber von Besamungsstationen oder von Embryo-Entnahmeeinheiten für den nationalen Handel bedürfen der Erlaubnis nach §18 des Nationalen Tierzuchtgesetzes (TierZG, 2019). Die Erlaubnis erfolgt durch die zuständige Tierzuchtbehörde des entsprechenden Bundeslandes.

Versuche zur Ermittlung und zum Verhalten von Bioindikatoren in mit Schadstoffen kontaminierter Luft

Die Raumluft ist haeufig mit toxischen Stoffen (besonders chlorierte Kohlenwasserstoffe wie PCP, Lindan sowie mit Formaldehyd) angereichert. Die ueblichen Analysen sind kompliziert, kostspielig und nicht lebensbezogen. Mit Pflanzen, Samen und pflanzlichem Plasma koennte der Nachweis verbessert werden, so dass ihn auch der Laie anwenden kann (was wegen der ubiquitaeren Verbreitung der Schadstoffe noetig waere).

Untersuchungen zur Vegetationsgeschichte und heutigen Vegetation des Lautermoores (Oberrheinische Tiefebene, SW-Deutschland)

Mittels Pollen, Grossresten und Geochemie wird die Vegetationsgeschichte des Gebietes untersucht, um die Entwicklung des Moores zu verstehen. Parallel werden die heutige Vegetation und ihre Standortsbedingungen aufgenommen. Anhand von Dauerquadraten wird die Sukzession nach einem Renaturierungsversuch belegt. Das Moor hat seine Anfaenge schon am Ende der letzten Eiszeit. Es beinhaltet die Vegetationsgeschichte bis in die juengste Zeit. Blaetter und Samen der Zwergbirke (Betula nana) und das Moos Drepanocladus tundrae konnten erstmals fuer das Gebiet nachgewiesen werden. Es kam nach dem Aufstau nicht zur schnellen Ausbreitung der Torfmoose, wie man gehofft hatte.

Ableitung von Statistiken höherer Ordnung aus Winddaten der unteren und mittleren Atmosphäre (HONDA)

Nichtlineare, stochastische und dissipative geophysikalische Strömungen in Atmosphäre und Ozean sind Teil der Turbulenztheorie. Diese beeinflussen die Dynamik im Bereich von Zentimetern bis zu mehreren hundert Metern sowie die meso- und synoptischen Skalen. Ein Beispiel hierfür ist das Powerspektrum von mesoskaligen horizontalen Winden, das sich statistisch ähnlich wie Meterskalen verhält und mit den Vorhersagen der klassischen isotropen 3D Turbulenz übereinstimmt, wie sie in der Arbeit von Nastrom und Gage von 1984 gefunden wurde. Diese Erkenntnis machte neue Turbulenztheorien nötig, die eine Alternative zur klassischen Erklärung der Schwerewellen bieten könnten, um die Physik hinter der mesoskaligen Dynamik in geophysikalischen Strömungen zu verstehen, wie etwa die Theorie der stratifizierten (geschichteten) Turbulenz (ST). Ein leistungsfähiges Untersuchungsinstrument der ST-Theorie ist die Analyse von Statistikdaten höherer Ordnung von Zustandsvariablen, die das mittlere Strömungsverhalten beschreiben. Dies gilt insbesondere für die Strukturfunktion (SF), die Messungen der gleichen Parameter zu verschiedenen Zeitpunkten und an verschiedenen Orten auf einen einzigen Wert, durch die Schätzung von Ensemble-Mittelwerten, synthetisiert. Eine wesentliche Einschränkung bei der Untersuchung der mesoskaligen Dynamik der Winde durch die Abschätzung von SFs hoher Ordnung für verschiedene atmosphärische Höhen ist jedoch der Mangel an geeigneten Messmöglichkeiten, die die horizontalen Mesoskalen mit ausreichend hoher Auflösung und zeitkontinuierlich erfassen können. Im Bereich der Mesosphäre und der unteren Thermosphäre (MLT) haben multistatische Meteorradarsysteme (SMRs) kürzlich bewiesen, dass sie diese Anforderungen erfüllen. Im Rahmen dieses Projekts werden zwei Hauptthemen verfolgt. Das erste ist die umfassende Analyse und Charakterisierung von SFs zweiter Ordnung der horizontalen mesoskaligen Winde aus multistatischen SMRs Beobachtungen in der MLT-Region. Wir wollen die Gültigkeit der Eigenschaft der horizontalen Isotropie beurteilen und ihre Auswirkungen auf die Dynamik von Rotations- und Divergenzmoden bewerten. Für diese Aufgaben stehen Messungen in mittleren und hohen Breitengraden zur Verfügung. Das zweite Hauptthema ist die Anwendung von Wind-SFs höherer Ordnung, die über die zweite Ordnung hinausgehen, unter Verwendung von MST-Radarwinddaten an einem einzelnen Standort. Die Anwendung der Taylor-Approximation Methode wird die Untersuchung der räumlichen Verschiebungen erleichtern, die aus zeitlichen Verzögerungen bestimmt werden. Die Methode wird anhand von Winden in der oberen Troposphäre und der unteren Stratosphäre implementiert und dann auf die mesosphärischen Winde ausgedehnt. Die Ergebnisse dieses Projekts werden Erkenntnisse über die Unterschiede und Gemeinsamkeiten im statistischen Verhalten der mesoskaligen Winde in verschiedenen atmosphärischen Höhen liefern.

1 2 3 4 5111 112 113