During evolution plants have coordinated the seasonal timing of flowering and reproduction with the prevailing environmental conditions. With the onset of flowering plants undergo the transition from vegetative growth to reproductive development. In agriculture, flowering is a prerequisite for crop production whenever seeds or fruits are harvested. In contrast, avoidance of flowering is necessary for harvesting vegetative parts of a plant. Late flowering also severely hampers breeding success due to long generation times. Thus, FTi (flowering time) regulation is of utmost importance for genetic improvement of crops. There are many new challenges for plant geneticists and breeders in the future (e.g. changing climate, need for higher yields, demand for vegetative biomass for bioenergy production), requiring novel approaches for altering the phenological development of a plant species beyond the currently available genetic variation. Changes in the expression of a single FTi regulator can suffice to drastically alter FTi. Exploiting the molecular fundament of FTi control offers new perspectives for knowledge-based breeding. Pleiotropic effects of FTi gene regulation beyond flowering time, such as yield parameters/hybrid yield were most recently demonstrated. This emerging field of research offers new possibilities for gaining insight into the very foundations of yield potential in crop plants. The Priority Programme aims to develop a functional cross-species network of FTi regulators for modelling developmental and associated (e.g. yield) characters in relation to environmental cues. Plant species with different phenological development will be investigated. Phylogenetic similarities can be used to infer similar functional interactions between FTi regulators in related crop species. Comparative analysis of FTi regulation among and between closely and remotely related species will identify distinct evolutionary paths towards optimisation of FTi in a diverse set of species and the branching points of divergence. Projects in this Priority Programme focus on genomic approaches to gain a comprehensive understanding of FTi regulation also in crops, which thus far have not been a major target of research. Another focus is on non-genetic cues regulating FTi and hormonal constitution and nutrient supply.
Vernalisationsbedarf, Tageslänge und Temperatur sind Schlüsselfaktoren, die den Blühzeitpunkt von Raps (Brassica napus L.) beeinflussen. Für Winterraps sind erhebliche Unterschiede im Vernalisationsbedarf bekannt und ein positiver Zusammenhang zwischen dem Vernalisationsbedarf und der Frosttoleranz bzw. Winterhärte wird angenommen. Unter typischen West-Europäischen Wachstumsbedingungen ist der Vernalisationsbedarf von Winterraps bereits Ende Dezember erfüllt, so dass Pflanzen, die vom Feld ins Gewächshaus gebracht werden, dort unter Langtagbedingungen und bei warmen Temperaturen innerhalb kurzer Zeit zur Blüte kommen. Unter Feldbedingungen blüht der Raps dagegen erst etwa vier Monate später. Dies zeigt, dass auch Faktoren wie Tageslänge und Temperatur den Blühzeitpunkt bestimmen. Hauptziel dieses Projekts ist die Aufklärung der Zusammenhänge zwischen Vernalisationsbedarf und Frosttoleranz bzw. Winterhärte und Blühzeitpunkt beim Raps in Abhängigkeit von Tageslänge und Temperatur. Dafür soll eine intensive phänotypische Charakterisierung einer doppelthaploiden Population aus einer Kreuzung zwischen dem Sommerraps Topas (DH4079) und der Winterrapssorte Express in verschiedenen Umwelten durchgeführt werden. Die Population soll im Hinblick auf (a) ihren Vernalisationsbedarf und Blühzeitpunkt unter Gewächshausbedingungen, (b) ihre Frosttoleranz nach Inkubation in einer Frostkammer, (c) den Einfluss von Tageslänge und/oder Temperatur auf den Blühzeitpunkt vollständig vernalisierter Pflanzen und (d) auf die Vererbung von Winterhärte und Blühzeitpunkt in Feldversuchen nach Aussaat im August sowie auf die Neigung zur Infloreszenzbildung und zur Blüte nach Aussaat im Frühjahr untersucht werden. Eine zu Projektbeginn bereits vorhandene molekulare Karte auf Basis des Illumina Infinium Brassica 60K SNP Chip soll für die Kartierung von QTL unter Verwendung der in den verschiedenen Umwelten ermittelten Merkmalswerten verwendet werden. Die QTL-Kartierung wird zeigen, inwiefern QTL für Frosttoleranz, Winterhärte und Blühbeginn in den verschiedenen Umwelten an den gleichen oder an unterschiedlichen Positionen im Rapsgenom liegen. Mit Hilfe einer globalen Transkriptanalyse (MACE =Massive Analysis of cDNA Ends) von kontrastierenden Bulks sollen Gene identifiziert werden, die in früh- und spätblühenden bzw. in frostsensitiven und frosttoleranten Genotypen unterschiedlich exprimiert werden. Über die somit ebenfalls gewonnenen 100 bp cDNA-Sequenzen und die Illumina SNP-Markersequenzen soll deren physikalische Position im Brassica-Genom bestimmt und damit Kandidatengene für die erfassten Merkmale identifiziert und ihre Positionen mit denen der kartierten QTL verglichen werden. Darüber hinaus werden SNP-Marker für weitere, den Blühzeitpunkt beeinflussende Gene, die von Brassica Projektpartnern entwickelt werden, kartiert und ihre Positionen mit den in diesem Projekt ermittelten QTL Positionen verglichen werden.
Wirbeltiere sind mit einer großen Zahl von Mikroorganismen assoziiert. Diese mikrobiellen Gemeinschaften tragen um Größenordnungen mehr Gene als ihre Wirte und erfüllen Funktionen, die im Genom des Wirts nicht kodiert sind. Der Magen-Darmtrakt zeichnet sich durch ein sehr diverses Mikrobiom aus. Beim Menschen wird eine verminderte mikrobielle Vielfalt im Darm mit vielen Krankheiten in Verbindung gebracht, darunter Autoimmunerkrankungen, Diabetes und Fettleibigkeit. Über die Beziehung zwischen Darmmikroben und Gesundheit in wild lebenden Wirbeltierpopulationen ist jedoch nur wenig bekannt, da dort eine höhere genetische Variation und eine ausgeprägte Umweltheterogenität die Auswirkungen des Darmmikrobioms auf den Wirt modulieren oder sogar überlagern können. Diese große Lücke in unserem Wissen über die Wechselwirkungen zwischen Wirt und Mikrobiom behindert unser Verständnis von Widerstandsfähigkeit und Anpassung von wild lebenden Tieren an den Klimawandel. In diesem Projekt untersuchen wir die antarktischen Pelzrobben und wollen verstehen wie sich Veränderungen im Darmmikrobiom der Tiere auf die Fitness von unterschiedlichen Wildpopulation auswirken. Als Steuergröße wird das verringerte Nahrungsangebot für einige Wildpopulationen genutzt, dass sich durch den Klimawandel in manchen Regionen der Antarktis ergeben hat. Entsprechend untersuchen wir zwei interagierende Umweltstressoren - Nahrungsbeschränkung und soziale Dichte. Das Projekt konzentriert sich auf das kritische Entwicklungszeitfenster zwischen der Geburt und der Ernährungsunabhängigkeit und wird die Auswirkungen wichtiger intrinsischer und extrinsischer Faktoren auf das Darmmikrobiom und sein Zusammenspiel mit mehreren fitnessrelevanten Phänotypen wie Wachstum, Überleben, Stresshormonspiegel, Immunfunktion und Genexpression aufklären. Darüber hinaus wird ein kürzlich entwickelter Einzelnukleotid-Polymorphismus-Array eine robuste Bewertung der modulierenden Auswirkungen des Wirtsgenotyps ermöglichen, einschließlich der vererbbaren genetischen Variation und der genetischen Qualität, ausgedrückt als Inzucht und immunogenetische Vielfalt. Wir stellen die Hypothese auf, dass eine geringere Nahrungsverfügbarkeit die mikrobielle Vielfalt im Darm verringert und die Prävalenz mukolytischer und proinflammatorischer Taxa erhöht, was sich negativ auf die Fitness des Wirts auswirkt. Diese Auswirkungen könnten bei Individuen mit schlechter genetischer Qualität besonders ausgeprägt sein, da diese weniger effektiv in der Lage sind, schädliche Mikroben zu bekämpfen, und dies auch unter stressigen Bedingungen mit hoher Dichte. Zusammenfassend lässt sich sagen, dass durch die Kombination von phänotypische Parametern der Individuen mit mikrobiellen Daten, erstmals mechanistische Einblicke in die Wirts-Mikroben-Interaktionen einer Wildtierart möglich werden, was Vorhersagen über langfristige Populationstrends und das Management des empfindlichen Ökosystems des Südlichen Ozeans ermöglicht.
Die Epidemiologie des wirtschaftlich in vielen Pflanzenkulturen bedeutenden Tomato Spotted Wilt Virus (TSWV) wird entscheidend determiniert durch die individuelle Fähigkeit der Vektoren (hier der Thrips Frankliniella occidentalis) zur Übertragung des Virus (Vektorkompetenz). Vektorkompetenz ist eine variable Größe in Thripspopulationen. Ziel der Studie ist es Faktoren zu ermitteln, die dieser Variablität zu Grunde liegen. Die Studie umfasst drei Abschnitte: (1) Untersuchungen zur Vererbbarkeit der Veranlagung der Vektor-Kompetenz von F. occidentalis für TSWV (Modellpflanze Paprika). Vorgesehen sind individuelle Kreuzungen von kompetenten und nicht kompetenten Weibchen und Männchen, die Ermittlung von Merkmalsaufspaltungen in der F1 und F2 sowie Rückkreuzungen. Bestimmt wird die Vektorkompetenz im individuellen Biotest (Ausprägung Phänotyp), zudem sollen Mikrosatelliten und/oder AFLP Marker zur genotypischen Charakterisierung eingesetzt werden. (2) Im zweiten Teil steht die Variabilität des Merkmals in Abhängigkeit von der Populationsstruktur im Vordergrund. Verglichen wird das Verhältnis von kompetenten und nicht kompetenten Individuen über die Zeit (Generationen) in isolierten Populationen unterschiedlicher Größe und bei künstlicher Fragmentierung (Gendrift; Flaschenhals-Effekte). (3) Im dritten Teil werden Faktoren analysiert, die zusätzlich die Verteilung (Rate) kompetenter Individuen in Populationen beeinflussen können, wiederum an prä-determinierten Individuen: Selektive Partnerwahl, Wirtspflanzenwahl, Intensität (Dauer, Frequenz) der Nahrungsaufnahme, Mobilität, Lebensdauer, Reproduktionsrate.
Im Fokus unseres Teilprojektes steht die Untersuchung der Effekte von Merkmalsvariabilität auf die Dynamiken innerhalb von Räuber-Beute-Systemen. Hierfür wird die Merkmalsvariabilität in der Beutegilde durch die phänotypische Plastizität des Beutebakteriums Pseudomoas putida abgebildet, welches in der Lage ist, sowohl Biofilme als auch Plankton zu bilden. Die Merkmalsvariabilität der Räubergilde ergibt sich aus den verschiedenen Nahrungspräferenzen der Räuberorganismen; Paramecium tetraurelia (ein Ciliat) ernährt sich ausschließlich von planktischen Bakterien, während die Amöbe Acanthamoebae castellanii ausschließlich Biofilm konsumiert. Es wurde ein neuartiges Chemostatensystem entwickelt, welches die separate Manipulation der Plankton- und der Biofilmphase erlaubt. Diese System ermöglicht es uns erstmalig, die Verteidigungskosten der Beutephänotypen gegenüber des jeweilig spezialisierten Räubers gezielt zu manipulieren. In der zweiten Förderperiode möchten wir das etablierte System nutzen und folgende vier Hypothesen testen, welche bereits durch erste Modelsimulationen unterstützt wurden:1) Merkmalsvariabilität in der Räubergilde erhöht den Kohlenstofffluss durch das System, weil die Akkumulation von Biomasse im fraßgeschützten Beutephänotyp verhindert wird.2) Phänotypische Plastizität der Beute kann indirekt die Koexistenz der Räuber fördern. Modellsimulationen weisen darauf hin, dass der Biofilmräuber im Ein-Räuber-System ausstirbt, da die Beute in den geschützten Phänotypen wechselt.3) In Weiteren werden wir uns auf die Systemdynamiken fokussieren und die Hypothese testen, dass ausgeglichene Verteidigungskosten innerhalb der Beutegilde zu zyklischen Systemdynamiken führen. Um das zu testen, werden wir die Wachstumsraten von beiden Beutephänotypen manipulieren. Das Planktonwachstum wird mit Antibiotika reduziert und das Biofilmwachstum durch erhöhte Kohlenstoffverfügbarkeit im Substrat erhöht.4) Abschließend erhöhen wir die Komplexität des Systems und fügen einen weiteren Beuteorganismus zu, welcher über eine höhere Biofilm- und eine geringere Planktonwachstumsrate verfügt. Die dadurch entstehende genotypische Variation und phänotypische Plastizität erhöhen die Merkmalsvariabilität in der Beutegilde. Mit diesem System testen wir die Hypothese, dass Merkmalsvariabilität in der Räubergilde die Koexistenz zweier sich konkurrierenden, phänotypisch plastischen Beutearten fördert.Diese Hypothesen werden in enger Vernetzung von Chemostatexperimenten und mathematischer Modellierung getestet. Das Projekt wird in Zusammenarbeit mit der DynaTrait-Gemeinschaft durchgeführt, insbesondere mit Gruppen welche ebenfalls bi-trophische Systeme untersuchen.
In Herkunftsversuchen soll die phänotypische und genetische Variation heimischer und fremdländischer Baumarten ermittelt werden. Gleichzeitig erfolgt eine Prüfung auf waldbauliche Eignung unter südwestdeutschen Standortverhältnissen.
Es soll durch Mesokosmosexperimente und ergänzende Laborversuche mit Modellsystemen untersucht werden, welche Auswirkungen die unterschiedliche Zusammensetzung des Mesozooplanktons im Meer (überwiegend Copepoden) und im Süßwasser (überwiegend Cladoceren) auf die Struktur des mikrobiellen Nahrungsnetzes hat und inwieweit sich Prädationseffekte des Zooplanktons über die Protozoen bis zur Bakterienebene fortsetzen. Für diesen Vergleich stehen folgende Fragestellungen im Vordergrund: 1) Welchen Prädationseifluß haben limnische und marine Vertreter von cladoceren- und copepoden-dominiertem Zooplankton auf die verschiedenen funktionellen Gruppen heterotropher und mixotropher Protozoen? 2) Gibt es vom Mesozooplankton ausgehende direkte und indirekte (über die Protozoen) Wirkungen auf die Diversität, phänotypische Ausprägung und die Aktivitätsmuster des Bakterienplanktons? 3) Gibt es Unterschiede in den phänotypischen Anpassungen (z.B. Morphologie, Oberflächeneigenschaften, Exopolymere) planktischer Bakterien an Protozoenfraßdruck im limnischen und marinen Bereich?.
Origin | Count |
---|---|
Bund | 326 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Förderprogramm | 322 |
Text | 4 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 326 |
Language | Count |
---|---|
Deutsch | 310 |
Englisch | 58 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 5 |
Keine | 136 |
Webseite | 187 |
Topic | Count |
---|---|
Boden | 244 |
Lebewesen und Lebensräume | 328 |
Luft | 186 |
Mensch und Umwelt | 328 |
Wasser | 179 |
Weitere | 324 |