s/photochemischer-abbau/Photochemischer Abbau/gi
Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
Die Anwendung gasfoermiger Pestizide bringt es mit sich, dass Reste der toxischen Gase in die Troposphaere gelangen. Um entscheiden zu koennen, ob dort eine Anreicherung der Gase erfolgt, sind die chemischen Abbaumechanismen zu erforschen und kinetisch-quantitativ zu bestimmen. Als wesentlichste Abbaureaktion kann die Umsetzung mit OH-Radikalen angesehen werden. Es werden daher primaer die Reaktionen von OH-Radikalen mit HCN, CH3Br, C2H4O sowie PH3 und deren Homologe zu vermessen sein.
Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.
Nitrosamine sind ausgesprochen starke Karzinogene. Ihre Bildung im Magen durch die mit der Nahrung oder Pharmakas aufgenommenen Vorstufen gilt als gesichert. In Loesungen zersetzen sie sich beim Bestrahlen mit Sonnenlicht relativ schnell. Das Vorkommen von Nitrosaminen in der Atmosphaere und damit ihr Einatmen wurde bisher nicht in Erwaegung gezogen, da man auch unter diesen Bedingungen mit einer schnellen photochemischen Zersetzung durch das Sonnenlicht rechnete. Dieser Aufnahme stehen die 1975 in der Atemluft einiger amerikanischer Grosstaedte entdeckten Nitrosaminkonzentrationen entgegen. Bis Heute liegen jedoch keine detaillierten Untersuchungen ueber das Verhalten der Nitrosamine unter atmosphaerischen Bedingungen (Gasphase) vor. Die Aufklaerung des physikalisch-chemischen Verhaltens der Nitrosamine in der Gasphase koennte der Krebsforschung und dem Gesetzgeber neue Erkenntnisse und Entscheidungshilfen geben.
Die Methode der Pulsradiolyse und Blitzphotolyse eignet sich im Prinzip zur Untersuchung der Eigenschaften von Radikalen, Radikalionen, Elektronen in Loesungen und elektronisch angeregten Zustaenden sowie der durch diese Teilchen ausgeloesten chemischen Prozesse. Mit ihr gelingt es, die Zwischenstufen sehr schnell ablaufender chemischer Reaktionen (Bruchteile von Sekunden) aufzuklaeren. Daher eignet sich die Methode unter anderem auch als Nachweisverfahren von Zwischenschritten umweltrelevanter Reaktionen. Beispiele aus der aktuellen Arbeit sind die Aufklaerung des Abbaus von organischen Halogenverbindungen oder die Aufklaerung anomaler Oxydationsstufen von Metallen, die Ursache fuer die Toxiditaet von metallorganischen Verbindungen sein koennen.
Aminopolyphosphonate (APPs) sind starke Komplexbildner für Metalle, die zunehmend in der Industrie und im Haushalt eingesetzt werden. Sie sind gut wasserlöslich, nicht flüchtig und besitzen eine geringe Affinität zu organischen Phasen. Dennoch scheint in Kläranlagen die Sorption an Klärschlamm ein wichtiger Eliminierungssprozess zu sein. Die Polyphosphonat-Konzentrationen in deutschen Flüssen liegen derzeit im ng L-1- bis niedrigen µg L-1 Bereich. Es wird jedoch ein Anstieg der Polyphosphonat-Konzentrationen aufgrund einer erhöhten Produktion und Nutzung vorhergesagt. Das Umweltverhalten dieser Substanzen kann derzeit jedoch nicht zuverlässig abgeschätzt werden, was in erster Linie auf Wissenslücken bezüglich der Bedeutung von Sorptions- und Abbauprozessen für die Gesamtentfernung von APPs in natürlichen und technischen Systemen zurückzuführen ist. Darüber hinaus sind die Reaktionsmechanismen und -wege von AAPs nicht vollständig identifiziert. Dies erschwert sowohl die Vorhersage der Auswirkungen von Umweltparametern auf den Verbleib von APPs als auch die Entwicklung von Verfahren zur effizienten Entfernung in technischen Systemen. Ziel der vorgeschlagenen Forschung ist es daher, Sorbentien, Reaktanten und Umweltbedingungen zu identifizieren, die die Entfernung von APPs aus natürlichen Gewässern und in der Wasseraufbereitung begünstigen. Wir schlagen vor, die Auswirkungen wichtiger Umweltparameter (z.B. pH-Wert, Komplexbildung) auf Sorptions- und Abbausprozesse von APPs in sorgfältig konzipierten Laborexperimenten an zwei Vertretern dieser Substanzklasse zu untersuchen: ATMP (Amino-tris(methylenphosphonsäure) und EDTMP (Ethylendiamin-tetra¬(methylenphosphonsäure). Durch die Kombination von Isotopenanalyik und hochauflösender Massenspektrometrie unter Einbeziehung weiterer moderner Verfahren sollen die wichtigsten Sorptions- und Abbauprozesse sowie die Umwandlungsprodukte von APPs identifiziert werden. Die vorgeschlagenen Forschungsarbeiten umfasse drei Teilbereiche. Zunächst soll die Sorption von APPs an Eisen(hydr-)oxiden, Tonmineralen und Aktivkohle/Biokohle untersucht und die potenziellen Isotopenfraktionierungseffekte aufgrund der Sorption quantifiziert werden. Dann werden wir uns mit den natürlichen Umwandlungsprozessen von AAPs befassen, wobei der Schwerpunkt auf der Oxidation durch Manganoxide und der direkten Photolyse von APP-Fe(III)-Komplexen liegt. Schließlich werden AAP-Abbauprozesse in technischen Systemen wie Ozonolyse und elektrochemischen Oxidation untersucht.
In diesem Projekt sollen gemessene spektrale aktinische UV/VIS-Strahlungsflussdichten von sechs HALO-Missionen verwendet werden, um Strahlungstransportmodell-Vorhersagen zu überprüfen, die auf der Grundlage von Wolkeneigenschaften aus Satellitenbeobachtungen durchgeführt werden. Fünf der HALO-Missionen wurden bereits durchgeführt: TECHNO (2010), NARVAL-I (2014), OMO (2015), EMERGE (2017/2018) und CAFE-Africa (2018), mit einer Gesamtzahl von etwa 75 Forschungsflügen. Zudem sollen die Daten von CAFE-Brazil (2020) in die Auswertung einfließen. Der Hauptzweck der Messungen der aktinischen Strahlungsflussdichten ist die anschließende Berechnung von Photolysefrequenzen, die wichtige Größen in der Photochemie darstellen. Die HALO-Messungen bieten eine seltene Gelegenheit satelliten-gestützte Strahlungstransportmodell-Vorhersagen von Photolysefrequenzen zu überprüfen, da sie hochaufgelöste Stichproben aus verschiedenen Höhen und global verteilten Einsatzgebieten liefern. Zudem wurden während TECHNO, NARVAL und OMO durch einen Missionspartner spektrale Strahldichtemessungen in Nadir-Richtung durchgeführt. Diese Messungen umfassen den gesamten solaren Spektralbereich und bieten daher unabhängige lokale Informationen über Wolken unter dem Flugzeug, was die Interpretation und korrekte Anwendung der verfügbaren Wolkeneigenschaften erleichtern wird. Das Hauptziel des Projektes ist es herauszufinden, ob gemessene und durch ein Strahlungstransportmodell vorhergesagte Photolysefrequenzen durch den Einsatz der Satellitendaten in akzeptable Übereinstimmung gebracht werden können. Sollte dies gelingen, dann könnten auf der Grundlage satellitengestützter Wolkeninformationen nutzer-definierte 3D Felder von Photolysefrequenzen berechnet werden. Diese Felder können genutzt werden, um Vorhersagen von Chemie-Transportmodellen zu überprüfen, oder sie können in zukünftigen Anwendungen direkt in diese Modelle einfließen. Eine entsprechende Fallstudie soll im Rahmen dieses Projektes durchgeführt werden. Davon würden auch zukünftige HALO-Missionen und deren wissenschaftliche Interpretationen profitieren.
Bestimmung toxikologischer Elemente mittels Voltammetrie in Oberflaechenwaessern; Uebertragung auf ein Geraet zur kontinuierlichen Ueberwachung; Methodenausarbeitung; automatische Probenvorbereitung durch die UV-Photolyse bzw MW-Druckaufschluss.
Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
Es wird versucht, eine neue Methode zum Abbau von toxischen, biologisch schwer abbaubaren, halogenierten Verbindungen, Phenolen, Farbstoffen etc. in Abwaessern unter dem Einfluss von ionisierender Strahlung bzw. UV-Licht zu entwickeln. Es werden auch die bisher bekannten Literaturdaten kritisch ueberprueft und systematisiert. Da vielfach auch das Trinkwasser mit halogenierten Stoffen belastet wird, werden sich die Untersuchungen auch auf dieses Gebiet erstrecken. Die bisherigen Vorversuche an Trinkwasser zeigten, dass einfache, halogenhaeltige Kohlenwasserstoffe durch Bestrahlung mit ionisierender Strahlung (Roentgen-, Gammastrahlen, Elektronen) oder UV-Licht praktisch komplett abgebaut werden koennen. Die Untersuchungen umfassen: Strahlen- und photochemisch induzierten Abbau von chlorhaltigen organischen Verbindungen in Abwaessern; Strahlen- und photochemisch induzierter Abbau von Phenolen, Aldehyden u.a. toxischen Verbindungen in Abwaessern; Studien zum Abbau von halogenhaeltigen u.a. gesundheitsschaedlichen Verbindungen im Trinkwasser durch Anwendung von ionisierender Strahlung (Roentgen- bzw. Gammastrahlen oder Elektronen) bzw. UV-Licht.
| Origin | Count |
|---|---|
| Bund | 232 |
| Kommune | 32 |
| Land | 961 |
| Zivilgesellschaft | 15 |
| Type | Count |
|---|---|
| Daten und Messstellen | 959 |
| Förderprogramm | 229 |
| Text | 3 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 1188 |
| Language | Count |
|---|---|
| Deutsch | 1167 |
| Englisch | 38 |
| Resource type | Count |
|---|---|
| Archiv | 959 |
| Dokument | 3 |
| Keine | 207 |
| Webseite | 983 |
| Topic | Count |
|---|---|
| Boden | 1104 |
| Lebewesen und Lebensräume | 1109 |
| Luft | 1125 |
| Mensch und Umwelt | 1193 |
| Wasser | 1120 |
| Weitere | 1193 |