Wiederverwendung von Abwasser (AW) in landwirtschaftlicher Bewässerung ist eine effiziente Möglichkeit, Wasser zu sparen und die Nahrungsmittelproduktion für eine wachsende Bevölkerung unter den Bedingungen des Klimawandels zu steigern. Infrastrukturinvestitionen führen in vielen Ländern zu einer Verlagerung von Bewässerung mit unbehandeltem AW hin zu behandeltem AW. SP 5 wird dazu beitragen, die Hypothesen zu prüfen, dass i) die Umweltkonzentrationen von Schadstoffen, die aus dem Boden freigesetzt und von Pflanzen aufgenommen werden, hoch genug sind, um Antibiotikaresistenzen zu selektieren und horizontalen Gentransfer (HGT) in Böden und Pflanzen auszulösen, und ii) der Bodentyp die Freisetzung von Schadstoffen und die damit verbundene Selektion von Antibiotikaresistenzen moduliert. Die Wirkung der Zugabe von behandeltem oder unbehandeltem AW zu Leptosolen, Phäozemen und Vertisolen, die seit >80 Jahren mit unbehandeltem AW bewässert werden, auf Zusammensetzung der mikrobiellen Gemeinschaft und Häufigkeit von Antibiotikaresistenzgenen (ARG) sowie mobilen genetischen Elementen (MGE), die mit gramnegativen Bakterien (GNB) assoziiert sind, wird in einem gemeinsamen Inkubations- und Batch-Experiment in Gesamt-DNA getestet. HGT-Raten zwischen GNB werden für eine Teilmenge von Bodenproben bestimmt. Isolierte Enterobakterien (SP 6) werden auf das Vorhandensein übertragbarer Plasmide gescreent. Die Mobilisierung von ARG zu IncP-1-Plasmiden aufgrund der Selektion durch Antibiotika und Desinfektionsmittel, die dem AW zugesetzt und aus Boden freigesetzt werden, wird in einem Satellitenexperiment getestet. Dabei wird das Bodenbakterium Acinetobacter baylyi BD413, das IncP-1-Plasmide ohne ARG trägt, auf die unterschiedlich behandelten Böden aufgebracht, nach 28 Tagen isoliert und die Plasmide auf erworbene ARG gescreent. Die Relevanz der Pflanzen für Selektion und Ausbreitung von ARG und Transfer in die Nahrungskette wird im gemeinsamen Bodensäulexperiment mit monolithischen, "ungestörten", mit Koriander (Coriandrum sativum) bepflanzten Bodensäulen untersucht. SP 5 wird die Zusammensetzung der mikrobiellen Gemeinschaft in Phyllosphäre und Wurzeln/Rhizosphäre, die relative Häufigkeit von ARG und MGE von GNB und die HGT-Raten zwischen GNB bewerten. SP 5 bringt gleiches Fachwissen und gleiche Techniken in das gemeinsame Feldexperiment mit Koriander bepflanztem Phäozem-Boden ein, um kontrollierte Labor- und Gewächshausversuche mit realen Bedingungen zu verbinden, insbesondere im Hinblick auf Auswirkungen von Bewässerungswasserqualität auf Phyllosphärenbakterien, die unter Gewächshausbedingungen schwer zu untersuchen sind. Durch Verknüpfung der Ergebnisse und Fachkenntnisse mit Daten und Kenntnissen der anderen SP, ebenfalls mit Hilfe des integrierten mathematischen Modells (SP 7), trägt SP 5 zu einem mechanistischen Verständnis der Wechselwirkungen zwischen Schadstoffen, Antibiotikaresistenzen und Pathogenen in sich verändernden AW-Bewässerungssystemen bei.
Einzellige Eukaryonten sind ideale Modellorganismen, die mit evolutionären Prozessen assoziierter Organismengruppen über unterschiedliche Zeitskalen, sogar über geologischer Zeiträume hinweg, kombiniert werden können. Mittels moderner molekularer und bioinformatischer Methoden sowie Kultivierungs- und Isolationstechniken sollen evolutionäre, insbesondere co-evolutionäre Prozesse von Populationen/Arten im ariden Lebensraum untersucht werden. Primäres Ziel ist es, populationsgenetische Diversitätsmuster symbiontischer Protisten, welche im Darm endemischer Insektenpopulationen vorkommen und zum Großteil genetisch separiert sind, im Zusammenhang mit den Wirtspopulationen zu untersuchen (B02). Darüber hinaus gilt es die genetische Struktur der Protistenpopulationen, welche mit einem bestimmten Microbiom (z. B. Rhizosphäre/Phyllosphäre; B04) assoziiert sind, im Zusammenhang mit dem Boden (B05) und der 'Wirts'-Pflanze (B01) zu analysieren, wobei die fragmentierten Salare in der Atacama von gesondertem Interesse sind.
Insektenkalamitäten können Menge und chemische Zusammensetzung von gelöster und partikulärer organischer Substanz (DOM, POM) innerhalb des Transfers zwischen Baumkronen und Boden verändern. Dies kann mikrobielle Aktivitäten in der Phyllosphäre und im Boden beeinflussen, was zu veränderten C und N Umsätzen führt. Projektziel ist, die C und N Verbindung zwischen Kronenraum und Boden in 60-jährigen Kiefernwäldern (Pinus silvestris L.) unter Insektenbefall zu untersuchen. Um die Hypothese zu testen, dass Massenvermehrung von herbivoren Insekten den C und N Umsatz in Kiefernwäldern steigert, wird (1) der Eintrag quantifiziert: DOM und POM Flüsse vom Kronenraum in den Boden, (2) Mechanismen bewertet: Effekte durch leicht- und schwerabbaubare Verbindungen in DOM und POM (Phenole, Lipide, Kohlenhydrate, Proteine, freie Aminosäuren) auf Kronen- und Bodenmikroorganismen (mikrobielle Biomasse, Enzymaktivitäten), sowie biogeochemische Prozesse (C-Mineralisierung) im Boden und (3) Konsequenzen quantifiziert: Treibhausgasemissionen (THG) und flüchtige organische Verbindungen (VOCs) vom Boden. Veränderte C und N Pfade werden über neu entwickelte Algorithmen modelliert, um langfristige Auswirkungen auf ökosystemarer Ebene abzuschätzen. Damit wird der Kurzschluss zwischen erhöhter DOM und POM Produktion im Kronenraum durch Herbivore einerseits, mit C und N Einträgen im Boden und Umsatzprozesse andererseits analysiert und modelliert.
Das mikrobiologische Projekt des SFBs thematisiert die Aktivität und Biogeographie der Mikroorganismen in der Atacama. Primäres Ziel ist die Analyse biogeographischer Muster von Mikroorganismen der Phyllosphäre, Rhizosphäre bzw. Boden ausgesuchter Modelpflanzen. Ein Vergleich der Verbreitung der im SFB untersuchten Organismen mit dem Mikrobiom und dessen Verbreitung soll korrelierte Migrationsprozesse aufzeigen. Darüber hinaus zielen wir auf die Identifikation von Umweltfaktoren, welche die Zusammensetzung der mikrobiellen Gemeinschaften in diesem extremen Habitat bedingen. Ein zweiter Schwerpunkt liegt in dem Revitalisierungspotential ruhender Mikroorganismen in Wüstenböden in Abhängigkeit von Wasser. Ziel ist es aktive Mikroorganismen zu identifizieren, um die mikrobiell getriebenen biogechemischen Konversionsprozesse zu verstehen, sowie die Bodenoberflächenprozesse, welche die Landschaftsentwicklung in der Wüste beeinflussen.
Eigene Untersuchungen in einem hohen atmogenen N-Eintrag sowie erhöhten NH3- und NO2-Konzentrationen in der Außenluft ausgesetzten Fichtenwald-Ökosystem zeigen erstmals, dass autotrophe Nitrifizierer einen für diese Mikroorganismen zuvor nicht identifizierten Lebensraum, die Phyllosphäre, wahrscheinlich den Nadelapoplasten, besiedeln. Erste Ergebnisse aus in situ-Begasungsexperimenten von Fichtenzweigen dieses Standorts mit NH3 bzw. mit NH3 plus 10 Pa C2H2 (als Inhibitor der Ammoniak-Monooxygenase: AMO) deuten darauf hin, daß die beobachtete NH3-Aufnahme über die Fichtennadeln nicht allein auf pflanzliche Aktivität zurückgeführt werden kann, sondern das autotrophe Nitrifizierer hierzu wesentlich beitragen. Ziel des Vorhabens ist es, unter Einsatz molekularbiologischer und mikroskopischer Techniken (confokales LSM) zum einen die Besiedlung des Nadel-Apoplasten von Fichten durch autotrophe NH3- und NO2-Oxidierern zu charakterisieren, zum anderen die Aufnahme von atmosphärischem NH3 und NO2 in die Nadelblätter in Abhängigkeit von dieser Besiedlung zu quantifizieren. Zu diesem Zweck sollen an zwei unterschiedlich stark atmogenen N-Einträgen ausgesetzten Fichten-Standorten die Nitrifizierer im Nadel-Apoplasten genau lokalisiert und deren Zellzahlen quantifiziert werden. Diese Daten sollen mit Ergebnissen aus NH3-Gaswechselmessungen korreliert werden, die mit bzw. ohne C2H2 als Inhibitor der AMO durchgeführt werden. Darüber hinaus soll die NH3- sowie NO2-Aufnahme an sterilen bzw. mit Nitrifizierern inokulierten Fichtenjungpflanzen parametrisiert sowie im Rahmen von 15NO3-Nachweis in der apoplastischen Waschflüssigkeit die Nitrifiziereraktivität zusätzlich nachgewiesen werden.
Pflanzen-besiedelnde Mikroorganismen etablieren komplexe Netzwerke, in denen Pilze und Oomyceten entscheidend die Diversität von Pflanzen-assoziierten Bakterien beeinflussen. Andererseits konkurrieren Oomyceten und Pilze um die ökologische Nische „Pflanze“. Daher ist es von großer Bedeutung, die Wechselwirkungen beider Organismengruppen zu verstehen.Ein Schlüsselorganismus der Phyllosphäre ist der Oomycet Albugo laibachii. In Vorarbeiten identifizierten wir zudem die zu den Basidiomyceten gehörende Hefe Moesziomyces bullatus ex Albugo on Arabidopsis (MbA) als Antagonisten von A. laibachii. Mittels Gen-Deletion konnten wir eine Glucoside hydrolase-family 25 (GH25) aus MbA identifizieren, die für den Antagonismus gegen A. laibachii essentiell ist. In Arabidopsis -Experimenten zeigte rekombinant produziertes GH25, welches eine Lysozymaktivität besitzt, eine signifikante Inhibition gegen A. laibachii. Phylogenetische Analysen zeigten, dass GH25 in Basidiomyceten weit verbreitet ist und in 2 Kladen auf splittet. Einige Basidiomyceten besitzen jedoch kein GH25-Ortholog. Zu diesen gehören die Cystofilobasidiales, die wir als “core taxa“ der Arabidopsis-Phyllosphere identifizieren konnten. Cystofilobasidiales zeigen einen Antagonismus gegenüber A. laibachii vergleichbar mit MbA, was einen GH25-unabhängigen Mechanismus der Inhibition impliziert.In diesem Projekt soll die Rolle von GH25-vermitteltem Antagonismus in mikrobiellen Gemeinschaften untersucht werden. Zudem sollen GH25-unabhängige Mechanismen in basidiomyceten Hefen identifiziert werden. Wir untersuchen die funktionelle Konservierung von GH25 als Inhibitor verschiedener Oomyceten, Pilze und Bakterien. Weiterhin werden wir die Rolle der GH25 Aktivität für die Mikrobiom-Struktur untersuchen unter der Annahme, dass ein Verlust der GH25-vermittelten Inhibition zur Destabilisierung und damit erhöhten Fluktuation in mikrobiellen Gemeinschaften führt.GH25-Orthologe verschiedener Basidiomyceten werden in der MbA_GH25 Mutante exprimiert, um deren Funktion in der mikrobiellen Interaktion zu testen. Parallel werden wir Inhibitoren aus Cystofilobasidium identifizieren. Dabei untersuchen wir den Einfluss von MbA und Cystofilobasidium auf bakterielle Gemeinschaften in An- und Abwesenheit von A. laibachii, wobei uns insbesondere die Rolle von GH25 für die Fitness der Hefen in verschiedenen Interaktionen interessiert.Parallel dazu werden wir Algorithmen weiter entwickeln, die es uns ermöglichen, mikrobielle Eigenschaften wie deren Wirtsspezifität und Lebensweise vorherzusagen, um die Zusammensetzung mikrobieller Substrukturen sowie die Rolle einzelner Schlüsselgene wie GH25 für deren Ausbildung zu verstehen. Somit kombiniert dieses Projekt einen bioinformatischen Ansatz zur Analyse und Vorhersage mikrobieller Strukturen mit einer funktionellen Analyse spezifischer Interaktionen, um Assemblierung, Stabilität und Verhalten mikrobieller Gemeinschaften in der Phyllosphäre auf mechanistischer Ebene zu verstehen.
Das SPP DECRyPT trägt dazu bei, die Rolle des pflanzlichen Immunsystems bei der Regulierung von Mikrobiomen und deren Leistungen für Pflanzen aufzuklären. Dieses DECRyPT-Projekt untersucht die wechselseitigen Interaktionen zwischen der systemischen Immunität von Pflanzen und dem Mikrobiom der Phyllosphäre. Wir fanden heraus, dass induzierte systemische Resistenz (ISR), ausgelöst durch Interaktionen der Wurzeln von Arabidopsis thaliana mit nützlichen Mikroben, die Zusammensetzung der Blattmikrobiota durch Pflanzen-Mikroben-Mikroben-Interaktionen verändert. Diese Interaktionen führten zur Rekrutierung neuer Mikrobiota mit pflanzenwachstumsfördernden Eigenschaften auf dem Blatt. In den für DECRyPT Phase-II vorgeschlagenen Arbeiten wollen wir die molekularen Mechanismen charakterisieren, die den von uns beobachteten Mikroben-Mikroben-Interaktionen zwischen Pseudomonas simiae und At-L-Sphere Flavobakterium Leaf82 zugrunde liegen und zur Rekrutierung von Leaf82 auf A. thaliana Blättern und zur Wachstumsförderung der Pflanzen führten. Zusätzlich wollen wir die Auswirkungen der gleichen Bakterien und zusätzlicher Pflanzen-Mikroben-Interaktionen auf das Phyllosphären-Mikrobiom von Hordeum vulgare (Gerste) untersuchen. In Gerste werden wir ISR mit synthetischen Gemeinschaften (SynComs) auslösen und die modulierenden Effekte des Pathogens Bipolaris sorokiniana untersuchen. Wir werden auch abiotischen Stress anwenden, mit dem übergeordneten Ziel, Veränderungen im Mikrobiom der Phyllosphäre als Reaktion auf mehrere Stressfaktoren zu identifizieren. Dabei folgen wir der Arbeitshypothese, dass robuste Mikrobiom-Veränderungen, die mit abiotischen und nützlichen und/oder pathogenen biotischen Stimuli assoziiert sind, wahrscheinlich einen breiten Spektrum an Stresstoleranzen in Pflanzen stärken. Darüber hinaus werden wir durch die Untersuchung der Blattmikrobiom-Dynamik als Reaktion auf Pflanze-Pflanze-Interaktionen untersuchen, ob Interaktionen zwischen Pflanzen das Mikrobiom der Phyllosphäre stabilisieren und Pflanzen und Pflanzengemeinschaften in die Lage versetzen, dem Pathogendruck besser zu widerstehen. Die damit verbundenen Funktionen des Mikrobioms werden in SynCom-Experimenten getestet. Parallele Analysen von Pflanzenwachstumsparametern und von Genexpressionsprofilen von sowohl Pflanzen als auch Mikrobiota werden Einblicke in die Auswirkungen der Mikrobiomdynamik auf die Pflanzenfitness und -gesundheit liefern. Zusammengenommen werden die Ergebnisse dieser Experimente Einblicke in Mikroben-Mikroben-, Mikroben-Pflanzen- und Pflanzen-Pflanzen-Interaktionen liefern und deren Rolle bei der Rekrutierung und Verbreitung von (der Pflanzenfitness fördernden) Mikrobiota-Funktionen in der Phyllosphäre charakterisieren.
Pflanzen werden von einer grossen Vielfalt von Mikroorganismen besiedelt, die als Pflanzenmikrobiota bezeichnet werden. Unter diesen sind Bakterien die häufigsten Bewohner, und besiedeln Pflanzen in ähnlich strukturierter Gemeinschaftszusammensetzung. Diese bakteriellen Microbiota erweitern den Phänotyp des Wirts und spielen eine wichtige Rolle für das Wachstum und die Gesundheit der Pflanzen. Unsere früheren Arbeiten im SPP2125 haben gezeigt, dass das angeborene Immunsystem der Pflanze im Allgemeinen und die durch reaktive Sauerstoffspezies vermittelte Immunität im Besonderen einen bedeutenden Einfluss auf die Zusammensetzung der Mikrobiota in der Phyllosphäre hat und Dysbiosen verhindert. Es ist derzeit unklar, ob das pflanzliche Immunsystem die Mehrzahl der Stämme direkt beeinflusst oder ob es vor allem Schlüsselspezies in Schach hält, die ihrerseits zum Aufbau der Gemeinschaft beitragen. In diesem Projekt werden wir einen synthetischen Gemeinschaftsansatz verwenden, der aus der Modellpflanze Arabidopsis thaliana und einer genomsequenzierten Blattbakterienstammsammlung besteht, die Exemplare der meisten in der Natur auf Blättern von A. thaliana vorkommenden Arten umfasst. Wir werden synthetische Gemeinschaften verwenden, um zu verstehen, wie das Immunsystem der Pflanze die Zusammensetzung der bakteriellen Gemeinschaft und die Häufigkeit der verschiedenen Stämme beeinflusst. Wir werden die Hypothese testen, dass die ROS-Signalisierung ein zentraler Teil eines genetischen Netzwerks ist und als Rheostat funktioniert, um die Struktur der Mikrobiota dynamisch zu steuern. Darüber hinaus werden wir die Grenzen zwischen dem pathogenen und dem nützlichen Potenzial der Mitglieder der Mikrobiota und die Konsequenzen für den Gesundheitszustand des Wirts untersuchen und versuchen, neue immunmodulierende Eigenschaften zu identifizieren. Insgesamt wird dieses Projekt zu unserem Verständnis des pflanzlichen Immunsystems und seiner Rolle bei der Kontrolle der Struktur und Funktion der pflanzlichen Mikrobiota beitragen.
Das vorgeschlagene Projekt untersucht die Grundlagen wie Mikrobiota durch das pflanzliche Immunsystem erkannt werden und untersucht die Funktion des Immunsystem für die Assoziierung mit Mikrobiota.Assoziationen von Wirt und Mikroorganismen der biotischen Umwelt sind entscheidend für viele Aspekte eukaryotischen Lebens. Pflanzen können Assoziationen mit nützlichen Mikroorganismen tolerieren oder sogar fördern und zugleich pathogene Mikroben abwehren. Die Assoziation mit Mikrobiota stellt eine langfristige mikrobielle Belastung dar, da sie das Immunsystem anhaltend stimulieren kann.Die pflanzliche Immunität wird durch die Erkennung von Mikroben ausgelöst. Pflanzliche Immunrezeptoren, verwandt mit den Toll-ähnlichen Rezeptoren aus Tieren, erkennen molekulare bakterielle Muster, die in vielen Bakterien Familien vorkommen. Eine erfolgreiche Immunabwehr ist durch die Auslösung von akuten, transienten sowie moderaten, anhaltenden Abwehrantworten gekennzeichnet. Wie bakterielle Gemeinschaften vom pflanzlichen Immunsystem erkannt werden und wie die Erkennung zu einer Assoziation mit Mikrobiota aber Abwehr von Pathogenen führt, ist nur unzulänglich verstanden.Mit Hilfe von hochmodernen Methoden wie z.B. Metaproteomik und Parallel Reaktion Monitoring (PRM) werden wir die bakteriellen molekularen Muster auf der Ebene von Bakterien Gemeinschaften und Familien untersuchen und deren Menge und Art im Mikrobiom bestimmen. Bakterielles EF-Tu und Flagellin sind abundante molekulare Muster im Mikrobiom der Phyllosphäre und werden von den Arabidopsis EFR und FLS2 Rezeptoren des pflanzlichen Immunsystems erkannt. Dies löst Abwehrantworten aus, die die bakterielle Infektion reguliert. Wir werden das EF-Tu und Flagellin Elizitor Komplement, das von der Pflanze in Assoziationen mit synthetischen bakteriellen Gemeinschaften erkannt wird, bestimmen. Zudem werden wir versuchen, neuartige bakterielle molekulare Muster der Mikrobiota zu beschreiben.Des Weiteren werden wir bakterielle Gemeinschaften und die Fähigkeit zur mikrobiellen Homeostase in Pflanzen untersuchen, in denen die Immunantwort geschwächt oder induziert ist, z.B. durch das EF-Tu und Flagellin Elizitor Komplement. Über Infektionsexperimente werden wir ermitteln, ob die Aktivierung des Immunsystems durch Mikrobiota eine entscheidende Rolle für die Pathogen Abwehr spielt.Bei Beendigung des Projektes werden wir neue Erkenntnisse gewonnen haben, wie die Immunerkennung in der langfristigen Assoziation mit Mikrobiota erfolgt, und eine Einsicht in die Mechanismen haben, die die mikrobielle Homeostase regulieren. Dies wird zu einem verbesserten Verständnis einer wichtigen, offenen Frage in der Pflanzen-Mikroben Interaktion führen.
| Origin | Count |
|---|---|
| Bund | 23 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 23 |
| License | Count |
|---|---|
| offen | 27 |
| Language | Count |
|---|---|
| Deutsch | 22 |
| Englisch | 20 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Keine | 13 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 20 |
| Lebewesen und Lebensräume | 27 |
| Luft | 12 |
| Mensch und Umwelt | 27 |
| Wasser | 8 |
| Weitere | 27 |