API src

Found 213 results.

Related terms

KI-basierte Lösungen zur Reduzierung von Abrieb und verkehrsbedingten Mikroplastikemissionen, Teilvorhaben: iMES Solutions GmbH

Das Projekt KI-RAM liefert Beiträge zur Reduzierung von verkehrsbedingten Mikroplastikemissionen durch Reifenabrieb. Ein auf den Abrieb fokussierter Digitaler Zwilling von Nutzfahrzeugreifen wird erstellt. Mittels KI-basierter Analyse von Inline-Abriebsensor-Daten werden Haupteinflussfaktoren identifiziert, Restlaufzeitprognosen & ein Reifenranking realisiert sowie Strategien zur Abriebvermeidung erarbeitet. Das Ziel des von iMes bearbeiteten Teilprojekts ist die Entwicklung des oben genannten Digitalen Zwillings als Repräsentation von Nutzfahrzeugreifen und den daran auftretenden Abriebsprozessen. Die Forschungsfragen hierbei sind, welche Faktoren, wie z.B. Reifenmaterial, Wetter oder Straßenbelag, bewirken Reifenabrieb und wie groß ist deren Einfluss. Auch die Möglichkeit des Erkennens und der Vorhersage von Reifenabrieb durch den Digitalen Zwilling ist zu untersuchen. Des Weiteren soll analysiert werden, ob ein Zusammenhang zwischen den im Projekt durchgeführten Feldstudien zum Reifenabrieb (Vermessung der Reifendicke mit einem Inline-Abriebsensor eines Fahrzeuges im Einsatz über einen gewissen Zeitraum) mit den typischen Reifenabrieb-Labortests besteht. Diese Fragestellungen sollen mit Hilfe datengetriebener Modelle aus dem Bereich der Statistik und der künstlichen Intelligenz beantwortet werden.

KI-basierte Lösungen zur Reduzierung von Abrieb und verkehrsbedingten Mikroplastikemissionen, Teilvorhaben: Universität Paderborn

Das Projekt KI-RAM liefert Beiträge zur Reduzierung von verkehrsbedingten Mikroplastikemissionen durch Reifenabrieb. Ein auf den Abrieb fokussierter Digitaler Zwilling von Nutzfahrzeugreifen wird erstellt. Mittels KI-basierter Analyse von Inline-Abriebsensor-Daten werden Haupteinflussfaktoren identifiziert, Restlaufzeitprognosen & ein Reifenranking realisiert sowie Strategien zur Abriebvermeidung erarbeitet. Das Teilvorhaben der Universität Paderborn befasst sich mit der kontinuierlichen sensorischen Erfassung des Reifenabriebs im laufenden Betrieb von Großmuldenkippern, Containerfahrzeugen und schließlich LKW. In einem vorangegangenen Projekt wurde durch die Projektpartner Rösler Tyre Innovators GmbH&Co.KG, Fraunhofer IMWS und Universität Paderborn der Prototyp eines Reifenabriebsensors für Großmuldenkipper entwickelt, der es erstmals ermöglichte, den Reifenabrieb während des Betriebes in einer Auflösung von bis zu sieben Restprofiltiefen zu bestimmen. Im Rahmen dieses Projektes soll das Sensorkonzept überarbeitet und optimiert werden, um eine kontinuierliche, stufenlose Restprofiltiefenmessung zu erreichen. Die so gewonnenen Daten ermöglichen eine deutlich genauere Überwachung des Reifenzustandes. Neben der Entwicklung eines kontinuierlichen Sensorkonzeptes, soll das Messsystem auch deutlich verkleinert werden, um den Einsatz in regulären LKW-Reifen zu ermöglichen.

KI-basierte Lösungen zur Reduzierung von Abrieb und verkehrsbedingten Mikroplastikemissionen, Teilvorhaben: DENKweit GmbH

Das Projekt KI-RAM liefert Beiträge zur Reduzierung von verkehrsbedingten Mikroplastikemissionen durch Reifenabrieb. Ein auf Abrieb fokussierter Digitaler Zwilling von Nutzfahrzeugreifen wird erstellt. Mittels KI-basierter Analyse von Inline-Abriebsensor-Daten werden Haupteinflussfaktoren identifiziert, Restlaufzeitprognosen & ein Reifenranking realisiert, sowie Strategien zur Abriebvermeidung erarbeitet. Für DENKweit bestehen die folgenden wissenschaftlich-technischen Teilziele: Es soll ein Trainings- und Referenzdatensatz von Thermographieaufnahmen an Reifen aufgebaut werden, der als Grundlage für die Entwicklung von KI-basierten Auswertemethoden dient. Für die KI-basierte Analyse der IR-Reifendaten sollen verschiedene Netzarchitekturen hinsichtlich ihres Klassifizierungserfolges entwickelt und verglichen werden. Dazu gehören Objektdetektionsnetzwerke, Klassifizierungsnetzwerke und Anomaliedetektionsnetzwerke. Der Klassifizierungserfolg der einzelnen Architekturen als auch von Kombinationen der Netzwerke soll untersucht werden. Nachgeschaltet zu den neuronalen Netzwerken sind die gefundenen spezifischen Merkmale hinsichtlich Eigenschaften wie Fläche oder Temperaturbereich zu kategorisieren und gegebenenfalls in Defektkategorien einzuteilen. Die neuronalen Netze sollen so erweitert werden, dass externe Daten wie Abriebindikatoren beim Training berücksichtigt werden können. Das bezieht sich zum einen auf das Training der neuronalen Netze, zum anderen auf die nachgelagerte Verarbeitung der Netzergebnisse, um auch hier Wechselwirkungen mit den zusätzlichen Daten zu ermöglichen und statistische Auswertungen (Korrelationsanalysen, etc.) betreiben zu können. Experimentelle Validierung der Netze mit Messdaten des Abriebsensors erlauben es, die durch die KI ausgewerteten IR-Daten mit und ohne Kombination mit den Daten des Abriebsensors Aussagen über Haupteinflussfaktoren, Restlaufzeiten zutreffen und ein Reifenranking vorzunehmen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Vorkommen und Auswirkungen von Mikroplastik auf Bodenpilze und Prozesse entlang von Landnutzungsgradienten

Plastik wurde in einer Vielzahl von Umweltkompartimenten nachgewiesen, überwiegend als Mikroplastik, d.h. Kunststoffteile kleiner als 5 mm. Erste Untersuchungen wurden in marinen und aquatischen Systemen durchgeführt; Böden sind hingegen erst kürzlich in Bezug auf Mikroplastik in den Fokus gerückt, wobei Daten zeigen, dass es sich um eine verbreitete Kontamination der Böden handelt, mit potenziellen Folgen für bodenphysikalische, -chemische und -biologische Parameter. Angesichts der Vielzahl von Eintragspfaden, zu denen Plastikmüll, Kompost, Ablagerung aus der Luft und Straßen gehören, ist davon auszugehen, dass Mikroplastik in Böden der Biodiversitäts-Exploratorien vorhanden ist. Unsere Forschung hat zwei Ziele: Erstens wollen wir wissen, ob Mikroplastik (Vorhandensein und/oder Typ) die Intensität der Landnutzung widerspiegeln kann. Dafür werden wir Böden aus allen 150 EPs im Grünland beproben und mit Extraktions- und Identifikationsmethoden (Fourier-Transform-Infrarot-Spektroskopie-Mikroskopie) auf Mikroplastikgehalt, -art und -zusammensetzung untersuchen. Wir können diese Daten dann mit Komponenten der Landnutzungsintensität (LUI) sowie mit Bodeneigenschaften verknüpfen. Zweitens wollen wir die Auswirkungen einer experimentellen Mikroplastik-Zugabe im Feld entlang des Landnutzungsgradienten testen. Wir werden dies mit dem Einsatz und der Wiederentnahme (nach einem Jahr) von kleinen Mesh-Beuteln mit Mikroplastik-kontaminiertem Boden angehen, die in allen VPs im Grünland vergraben werden (mit dem Boden der jeweiligen VPs). Wir verwende hierfür Polyesterfasern, von denen wir bereits wissen, dass sie klare und konsistente Auswirkungen auf bodenphysikalische Eigenschaften und Bodenprozesse haben. Unsere Messvariablen umfassen pilzbezogene Bodenprozesse (Zersetzung, Bodenaggregation) und Pilz-Lebensgemeinschaften, die mittels Illumina MiSeq Hochdurchsatzsequenzierung erfasst werden. Mit unserem Feldversuch wollen wir testen, wie sich Mikroplastik-Effekte zwischen Bodenart und Umweltkontext sowie der Intensität der Landnutzung unterscheiden. Alle experimentellen Objekte werden anschließend aus dem Feld entfernt, um sicherzustellen, dass es keine dauerhafte Kontamination der Exploratorien-Böden gibt. Da wir in diesem Bereich nur einen Mikroplastik-Typ verwenden werden und die Mikroplastik-Verschmutzung aber ein vielschichtiges Thema ist, werden wir auch ein komplementäres Laborexperiment durchführen, bei dem wir nur einen Bodentyp pro Exploratorium verwenden, aber zusätzlich zu den Mikrofasern eine Reihe von verschiedenen Mikroplastik-Typen testen. Insgesamt wird dieses Projekt Einblicke in die Verbreitung und Wirkung von Mikroplastik in Böden liefern, indem sie die einzigartige Fülle der für die Exploratorien verfügbaren Informationen nutzt und gleichzeitig eine neue Variable bietet, die für andere Forscher (z.B. in Syntheseprojekten), aber auch für Stakeholder von Interesse sein kann.

Prozessoptimierte Verarbeitung von Hanfbast für anwendungsoptimierte Seilstrukturen

ONE MAN'S TRASH IS ANOTHER MAN'S TREASURE

Soil-Release-Beschichtung für textile Bodenbeläge auf der Basis dirigiertfunktionaler Nanocellulose

Nachhaltige Pulverlacke für industrielle Anwendungen

Zielsetzung: Aufgrund aktueller umwelt- und gesundheitspolitischer Erfordernisse ist die Reduzierung von Energie und die völlige Vermeidung von Mikroplastik bei gleichzeitiger, nachhaltiger Verbesserung wirtschaftlich-technologischer sowie umweltschonender Aspekte, ein zentrales Anliegen von Lackrohstoffanbietern, Lackherstellern und industriellen Lackanwendern. Eine in Frage kommende Technologie zur Beschichtung von industrienahen Produkten ist die Pulverlackapplikation. Aus diesen Gründen haben sich die Projektpartner iLF Magdeburg GmbH, Ganzlin Beschichtungspulver GmbH und die Otto-von-Guericke Universität Magdeburg das ehrgeizige Ziel gesteckt, eine biologisch abbaubare Beschichtung als Pulverlack zu entwickeln und den Eintrag von nicht abbaubaren Partikeln aus Kunststoffen während und nach der Nutzung der beschichteten Bauteile zu verhindern. Es werden verschiedene Arten der Biokunststoffe unterschieden. Dabei existieren neben den biologisch abbaubaren Kunststoffen aus nachwachsenden und fossilen Rohstoffen auch biologisch nicht abbaubare Biokunststoffe. Im Rahmen des hier beschriebenen Vorhabens wird der Fokus auf die biologisch abbaubaren Kunststoffe gelegt. Dabei sollen im Wesentlichen zwei Pfade verfolgt werden: die PLA-Route und die Polyester-Route. In beiden Fällen sollen den Matrixmaterialien (PLA und Polyester) natürliche, regional verfügbare Füll- und Farbstoffe zugesetzt werden. Als Füllstoffmaterialien kommen dabei Cellulose, Maismehl oder Lignin in Frage. Die Farbgebung soll zunächst in 3 Farbtönen durch Verwendung natürlicher Farbstoffe wie Karotin, Rote Beete oder Ruß erfolgen. Zusätzlich verfolgen die Projektpartner das Ziel, möglichst niedrige Verarbeitungstemperaturen zu erreichen, um in Zeiten massiv steigender Energiekosten wirtschaftlich und umweltschonend produzieren zu können. Weiterhin sollen möglichst alle Rohstoffe aus Europa stammen, um den gesamten Produktlebenszyklus nachhaltig zu gestalten. Das Projektkonsortium stellt sicher, dass eine Charakterisierung der Ausgangsmaterialien und der erhaltenen Beschichtungen mit modernsten Methoden der Bildgebung und Analytik kombiniert werden mit Know-How und Methoden im Bereich der Oberflächenprüftechnik und der industriellen Entwicklung und Herstellung von Pulverlacken. Die Projektpartner haben in Ihrer langjährigen erfolgreichen Kooperation bereits mehrfach Produktinnovationen hervorgebracht und verfügen über die dafür notwendige Expertise.

Verständnis der Effekte von Mikroplastik auf Rhizosphärenprozesse und -wechselwirkungen in landwirtschaftlichen Böden, Teilprojekt B

Spezialenzyme zur Oxidation und Degradation von Kohlenwasserstoffen und deren beispielhafte Anwendung in Wasch- und Reinigungsverfahren

1 2 3 4 520 21 22