Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.
Zielsetzung: Aufgrund aktueller umwelt- und gesundheitspolitischer Erfordernisse ist die Reduzierung von Energie und die völlige Vermeidung von Mikroplastik bei gleichzeitiger, nachhaltiger Verbesserung wirtschaftlich-technologischer sowie umweltschonender Aspekte, ein zentrales Anliegen von Lackrohstoffanbietern, Lackherstellern und industriellen Lackanwendern. Eine in Frage kommende Technologie zur Beschichtung von industrienahen Produkten ist die Pulverlackapplikation. Aus diesen Gründen haben sich die Projektpartner iLF Magdeburg GmbH, Ganzlin Beschichtungspulver GmbH und die Otto-von-Guericke Universität Magdeburg das ehrgeizige Ziel gesteckt, eine biologisch abbaubare Beschichtung als Pulverlack zu entwickeln und den Eintrag von nicht abbaubaren Partikeln aus Kunststoffen während und nach der Nutzung der beschichteten Bauteile zu verhindern. Es werden verschiedene Arten der Biokunststoffe unterschieden. Dabei existieren neben den biologisch abbaubaren Kunststoffen aus nachwachsenden und fossilen Rohstoffen auch biologisch nicht abbaubare Biokunststoffe. Im Rahmen des hier beschriebenen Vorhabens wird der Fokus auf die biologisch abbaubaren Kunststoffe gelegt. Dabei sollen im Wesentlichen zwei Pfade verfolgt werden: die PLA-Route und die Polyester-Route. In beiden Fällen sollen den Matrixmaterialien (PLA und Polyester) natürliche, regional verfügbare Füll- und Farbstoffe zugesetzt werden. Als Füllstoffmaterialien kommen dabei Cellulose, Maismehl oder Lignin in Frage. Die Farbgebung soll zunächst in 3 Farbtönen durch Verwendung natürlicher Farbstoffe wie Karotin, Rote Beete oder Ruß erfolgen. Zusätzlich verfolgen die Projektpartner das Ziel, möglichst niedrige Verarbeitungstemperaturen zu erreichen, um in Zeiten massiv steigender Energiekosten wirtschaftlich und umweltschonend produzieren zu können. Weiterhin sollen möglichst alle Rohstoffe aus Europa stammen, um den gesamten Produktlebenszyklus nachhaltig zu gestalten. Das Projektkonsortium stellt sicher, dass eine Charakterisierung der Ausgangsmaterialien und der erhaltenen Beschichtungen mit modernsten Methoden der Bildgebung und Analytik kombiniert werden mit Know-How und Methoden im Bereich der Oberflächenprüftechnik und der industriellen Entwicklung und Herstellung von Pulverlacken. Die Projektpartner haben in Ihrer langjährigen erfolgreichen Kooperation bereits mehrfach Produktinnovationen hervorgebracht und verfügen über die dafür notwendige Expertise.
Plastik wurde in einer Vielzahl von Umweltkompartimenten nachgewiesen, überwiegend als Mikroplastik, d.h. Kunststoffteile kleiner als 5 mm. Erste Untersuchungen wurden in marinen und aquatischen Systemen durchgeführt; Böden sind hingegen erst kürzlich in Bezug auf Mikroplastik in den Fokus gerückt, wobei Daten zeigen, dass es sich um eine verbreitete Kontamination der Böden handelt, mit potenziellen Folgen für bodenphysikalische, -chemische und -biologische Parameter. Angesichts der Vielzahl von Eintragspfaden, zu denen Plastikmüll, Kompost, Ablagerung aus der Luft und Straßen gehören, ist davon auszugehen, dass Mikroplastik in Böden der Biodiversitäts-Exploratorien vorhanden ist. Unsere Forschung hat zwei Ziele: Erstens wollen wir wissen, ob Mikroplastik (Vorhandensein und/oder Typ) die Intensität der Landnutzung widerspiegeln kann. Dafür werden wir Böden aus allen 150 EPs im Grünland beproben und mit Extraktions- und Identifikationsmethoden (Fourier-Transform-Infrarot-Spektroskopie-Mikroskopie) auf Mikroplastikgehalt, -art und -zusammensetzung untersuchen. Wir können diese Daten dann mit Komponenten der Landnutzungsintensität (LUI) sowie mit Bodeneigenschaften verknüpfen. Zweitens wollen wir die Auswirkungen einer experimentellen Mikroplastik-Zugabe im Feld entlang des Landnutzungsgradienten testen. Wir werden dies mit dem Einsatz und der Wiederentnahme (nach einem Jahr) von kleinen Mesh-Beuteln mit Mikroplastik-kontaminiertem Boden angehen, die in allen VPs im Grünland vergraben werden (mit dem Boden der jeweiligen VPs). Wir verwende hierfür Polyesterfasern, von denen wir bereits wissen, dass sie klare und konsistente Auswirkungen auf bodenphysikalische Eigenschaften und Bodenprozesse haben. Unsere Messvariablen umfassen pilzbezogene Bodenprozesse (Zersetzung, Bodenaggregation) und Pilz-Lebensgemeinschaften, die mittels Illumina MiSeq Hochdurchsatzsequenzierung erfasst werden. Mit unserem Feldversuch wollen wir testen, wie sich Mikroplastik-Effekte zwischen Bodenart und Umweltkontext sowie der Intensität der Landnutzung unterscheiden. Alle experimentellen Objekte werden anschließend aus dem Feld entfernt, um sicherzustellen, dass es keine dauerhafte Kontamination der Exploratorien-Böden gibt. Da wir in diesem Bereich nur einen Mikroplastik-Typ verwenden werden und die Mikroplastik-Verschmutzung aber ein vielschichtiges Thema ist, werden wir auch ein komplementäres Laborexperiment durchführen, bei dem wir nur einen Bodentyp pro Exploratorium verwenden, aber zusätzlich zu den Mikrofasern eine Reihe von verschiedenen Mikroplastik-Typen testen. Insgesamt wird dieses Projekt Einblicke in die Verbreitung und Wirkung von Mikroplastik in Böden liefern, indem sie die einzigartige Fülle der für die Exploratorien verfügbaren Informationen nutzt und gleichzeitig eine neue Variable bietet, die für andere Forscher (z.B. in Syntheseprojekten), aber auch für Stakeholder von Interesse sein kann.
Zielsetzung: Ziel des Gesamtprojekts 'PlasticFreeDanube' ist die Etablierung eines fundierten Wissensstands zu Kunststoffverschmutzungen in und entlang der Donau sowie die Festlegung standardisierter Methoden zur Einschätzung von Eintragsquellen, Quantitäten, Transportverhalte und Umweltgefahren in fluvialen Systemen. Folgende Kernziele werden dabei verfolgt: i) Bereitstellen von Methodik und Daten für die Beurteilung und das Monitoring von Kunststoffverschmutzung in Flussökosystemen ii) Entwicklung eines Aktionsplans für Kunststoffabfälle und Umsetzung von Pilotmaßnahmen gegen die Verschmutzung von Kunststoff in und entlang der Donau iii) Bewusstseinsbildung von Öffentlichkeit und Stakeholdern betreffend die Kunststoffverschmutzung von Flüssen Daten über Ursprung und Mengen des Kunststoffs, der in die Donau gelangt, werden aus bereits existierenden Daten und Feldforschung (Vor-Ort Abfallsammlungen und Sortierungen) generiert und darauffolgend in einer Materialflussanalyse zusammengefasst. Des weiteren werden Zusammensetzung und Eigenschaften qualitativ analysiert & Umweltgefahren durch Kunststoffzerfall im Wasser bewertet. Darauf aufbauend werden Pilotmaßnahmen entwickelt und implementiert und ein gemeinsamer Aktionsplan erarbeitet. Maßnahmen zur Bewusstseinssteigerung & zum Wissensaufbau für Stakeholder sollen die Nutzung und Nachhaltigkeit der Projektergebnisse gewährleisten.
Die traceless materials GmbH ist ein Bioökonomie Start-up Unternehmen, das im Jahr 2020 als Ausgründung der TU Hamburg hervorgegangen ist. Das Hauptgeschäftsfeld stellt die Entwicklung und Produktion des traceless Materials (rückstandslos biologisch abbaubares Material) für den Kunststoffverarbeitungsmarkt dar. Erklärtes Ziel ist, einen messbaren Beitrag zur Lösung der weltweiten Verschmutzung durch Kunststoffe zu leisten. Die traceless materials GmbH stellt mittels eines innovativen Verfahrens ein Material her, welches vergleichbare Eigenschaften wie Kunststoff besitzt. Es handelt sich dabei aber um eine neuartige Materialkategorie. Konventioneller Kunststoff wird in einem synthetischen Verfahren und zum Großteil aus fossilen Rohstoffen hergestellt. Der Rohstoff in diesem Projekt hingegen sind pflanzliche Reststoffe, welche nach der Extraktion der natürlichen Polymere noch als Futtermittel oder zur energetischen Verwertung genutzt werden können. Im Vorhaben soll eine Demonstrationsanlage mit einer Kapazität von mehreren Tausend Tonnen pro Jahr errichtet und betrieben werden. Im Herstellungsprozess des traceless Materials wird als Rohstoff ein pflanzlicher Reststoff verwendet, der als Nebenprodukt der industriellen Getreideverarbeitung anfällt. Mit einem zum Patent angemeldeten Verfahren werden daraus natürliche Polymere extrahiert und zu einem Granulat verarbeitet. Dieses Granulat kann mit gängigen Technologien der Kunststoffverarbeitung zu verschiedenen Produktanwendungen weiterverarbeitet werden, beispielsweise im Spritzguss oder der Extrusion. Das hergestellte Material könnte z.B. zur Herstellung von Einwegverpackungen und -produkten, welche leicht in die Umwelt gelangen oder sich nicht recyceln lassen, eingesetzt werden und so zur Verbrauchsminderung fossiler Rohstoffe beitragen. Damit soll auch die Umweltverschmutzung zurückgehen, da das Material sich rückstandslos abbaut und nicht schädlich für Flora und Fauna ist, wenn es unsachgemäß in der Umwelt entsorgt werden sollte. Produkte, die aus dem Material hergestellt werden, sind entweder über den Restmüll oder bei Verpackungen über den gelben Sack/die gelbe Tonne/Wertstofftonne zu entsorgen. In beiden Fällen werden sie energetisch verwertet, da der Marktanteil für eine sortenreine Sammlung und mechanisches Recycling derzeit zu gering ist. Eine Entsorgung über die Bioabfallsammlung ist nicht zulässig, auch wenn das Material zertifiziert gartenkompostierbar ist. Bei einer Kompostierung würde auch der energetische Nutzen verloren gehen. Bei einer jährlichen Produktionskapazität von mehreren Tausend Tonnen können nicht nur substantiell CO 2 -Emissionen und fossile Energieträger, sondern auch Wasser und Landressourcen eingespart werden. Das Verfahren ist für eine Vielzahl von Unternehmen der Chemie- und Kunststoffindustrie übertragbar. Da das Material auf den gängigen Anlagen der kunststoffverarbeitenden Industrie eingesetzt werden kann, ist eine Übertragbarkeit ohne (hohen) Aufwand möglich. Weiterhin wird an der Übertragbarkeit dieses Verfahrens der Polymerextraktion auf andere Reststoffe von Getreide geforscht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: traceless materials GmbH Bundesland: Hamburg Laufzeit: seit 2023 Status: Laufend
Plastic is pouring from land into our oceans at a rate of nearly 10 million tonnes a year. Once in the sea, plastics fragment into particles moving with the currents and ocean gyres before washing up on the coastline. The smaller the size the higher the risk posed by these particles to organisms and human health. EU-funded LABPLAS will develop new techniques and models for the quantification of small micro- and nano plastics (SMNP). Specifically, LABPLAS will determine reliable identification methods for more accurate assessment of the abundance, distribution, and toxicity determination of SMNP and associated chemicals in the environment. It will also develop practical computational tools to facilitate the mapping of plastic-impacted hotspots and promote scientifically sound plastic governance. Objective: There are 5,250 billion plastic particles floating on the surface on the world's seas and oceans, equivalent to 268,940 metric tons of waste. These fragments move with the currents before washing up on beaches, islands, coral atolls or one of the five great ocean gyres. Because MP cannot be removed form oceans, proactive action regarding research on plastic alternatives and strategies to prevent plastic entering the environment should be taken promptly. Despite the research increasing, there is still a lack of suitable and validated analytical methods for detection and quantification of small micro- and nano plastics (SMNP) evidencing a huge obstacle for large-scale monitoring. There is also a lack of hazard and fate data which would allow their risk assessment. LABPLAS is a 48-months project whose vision is creating capacities (sampling, analysis and quantification techniques, new materials and new models) to evaluate rapidly and precisely the interactions of plastics with the environmental compartments and natural cycles leading to the development of effective mitigation and elimination measures, as well as, making management decisions. It will assess reliable identification methods for more accurate assessment of the abundance, distribution and toxicity determination of SMNP in the environment, giving the opportunity of new developments of cutting edge technologies. It will also develop practical computational tools that up-scaled should allow European agencies to map plastic-impacted hotspots. The project will have a multi-actor approach, creating scientific knowledge with a partnership of scientists, technicians, research organizations and enterprises, working together towards the recognition at different levels (society, industry, policy) of the main issues (sources, potential biodegradability, ecotoxicology, ingestion, environmental assessment) related to the presence of plastics in ecosystems.
Die traceless materials GmbH ist ein Bioökonomie Start-up Unternehmen, das im Jahr 2020 als Ausgründung der TU Hamburg hervorgegangen ist. Das Hauptgeschäftsfeld stellt die Entwicklung und Produktion des traceless Materials (rückstandslos biologisch abbaubares Material) für den Kunststoffverarbeitungsmarkt dar. Erklärtes Ziel ist, einen messbaren Beitrag zur Lösung der weltweiten Verschmutzung durch Kunststoffe zu leisten. Die traceless materials GmbH stellt mittels eines innovativen Verfahrens ein Material her, welches vergleichbare Eigenschaften wie Kunststoff besitzt. Es handelt sich dabei aber um eine neuartige Materialkategorie. Konventioneller Kunststoff wird in einem synthetischen Verfahren und zum Großteil aus fossilen Rohstoffen hergestellt. Der Rohstoff in diesem Projekt hingegen sind pflanzliche Reststoffe, welche nach der Extraktion der natürlichen Polymere noch als Futtermittel oder zur energetischen Verwertung genutzt werden können. Im Vorhaben soll eine Demonstrationsanlage mit einer Kapazität von mehreren Tausend Tonnen pro Jahr errichtet und betrieben werden. Im Herstellungsprozess des traceless Materials wird als Rohstoff ein pflanzlicher Reststoff verwendet, der als Nebenprodukt der industriellen Getreideverarbeitung anfällt. Mit einem zum Patent angemeldeten Verfahren werden daraus natürliche Polymere extrahiert und zu einem Granulat verarbeitet. Dieses Granulat kann mit gängigen Technologien der Kunststoffverarbeitung zu verschiedenen Produktanwendungen weiterverarbeitet werden, beispielsweise im Spritzguss oder der Extrusion. Das hergestellte Material könnte z.B. zur Herstellung von Einwegverpackungen und -produkten, welche leicht in die Umwelt gelangen oder sich nicht recyceln lassen, eingesetzt werden und so zur Verbrauchsminderung fossiler Rohstoffe beitragen. Damit soll auch die Umweltverschmutzung zurückgehen, da das Material sich rückstandslos abbaut und nicht schädlich für Flora und Fauna ist, wenn es unsachgemäß in der Umwelt entsorgt werden sollte. Produkte, die aus dem Material hergestellt werden, sind entweder über den Restmüll oder bei Verpackungen über den gelben Sack/die gelbe Tonne/Wertstofftonne zu entsorgen. In beiden Fällen werden sie energetisch verwertet, da der Marktanteil für eine sortenreine Sammlung und mechanisches Recycling derzeit zu gering ist. Eine Entsorgung über die Bioabfallsammlung ist nicht zulässig, auch wenn das Material zertifiziert gartenkompostierbar ist. Bei einer Kompostierung würde auch der energetische Nutzen verloren gehen. Bei einer jährlichen Produktionskapazität von mehreren Tausend Tonnen können nicht nur substantiell CO2-Emissionen und fossile Energieträger, sondern auch Wasser und Landressourcen eingespart werden. Das Verfahren ist für eine Vielzahl von Unternehmen der Chemie- und Kunststoffindustrie übertragbar. Da das Material auf den gängigen Anlagen der kunststoffverarbeitenden Industrie eingesetzt werden kann, ist eine Übertragbarkeit ohne (hohen) Aufwand möglich. Weiterhin wird an der Übertragbarkeit dieses Verfahrens der Polymerextraktion auf andere Reststoffe von Getreide geforscht.
Kurzbeschreibung Im Projekt "Plastic Pirates – deutsche Küste" begeben sich Schulklassen und Jugendgruppen auf die Suche nach Plastikmüll an den Küsten und am Flusssystem der Elbe – einschließlich ihrer Zuflüsse wie Havel, Mulde oder Saale, ebenso wie am Flusssystem der Donau einschließlich ihrer Zuflüsse. Damit leisten sie einen wichtigen Beitrag zur Forschung. Denn großflächige Daten zum Vorkommen, Verteilung und Ausbreitung von Plastikmüll in Deutschland liegen bisher hauptsächlich aus Citizen-Science-Projekten vor. Der neue Fokus auf ein bestimmtes Flusssystem sowie auf Küstengebiete soll dabei helfen, Zusammenhänge entlang des Flusslaufs besser zu verstehen. Teilnahmemöglichkeiten Schulklassen und Jugendgruppen können an insgesamt vier Aktionszeiträumen teilnehmen, vom Herbst 2023 bis zum Frühjahr 2025. Die begleitenden Lehr- und Arbeitsmaterialien sowie das Aktionsheft führen durch die Aktion und können von Lehrkräften oder Gruppenleiter:innen kostenfrei auf der Plastic Pirates Webseite bestellt werden, solange der Vorrat reicht. Im Zuge der Probennahme machen sich die teilnehmenden Jugendlichen mit dem Ozean und Wasserkreisläufen vertraut. Sie setzen sich mit dem Thema Plastikmüll in der Umwelt auseinander. Dabei lernen sie, was wissenschaftliches Arbeiten bedeutet, und probieren es selbst aus. Was passiert mit den Ergebnissen? Die gesammelten Forschungsdaten werden auf eine zentrale Webplattfom hochgeladen und anschließend von Wissenschaftler:innen der Kieler Forschungswerkstatt und dem Ecologic Institut ausgewertet. Sie sollen auch dazu dienen, passende Lösungen für die Plastikkrise abzuleiten. Das Projekt ist dabei auch Teil der europäischen Initiative "Plastic Pirates – Go Europe!" und es findet eine enge Zusammenarbeit mit weiteren teilnehmenden Ländern in ganz Europa statt. Die Rolle des Ecologic Instituts Das Ecologic Institut unterstützt die Konzeption und Erarbeitung eines neuen Aktionshefts für die Küste, inkl. der Entwicklung einer ergänzenden Methodik, welche federführend durch die Kieler Forschungswerkstatt und gemeinsam mit den europäischen Partnern der Plastic Pirates erfolgt. Zudem ist das Team des Ecologic Instituts im Projekt dafür verantwortlich, Interessierte und Teilnehmende zu betreuen und bei den Probennahmen zu unterstützen. Um die sozialwissenschaftliche Forschung innerhalb des Projekts zu stärken, wird das Ecologic Institut Fokusgruppen mit ausgewählten Schulklassen durchführen. Dabei werden die Erkenntnisse der Probennahmen gemeinsam mit den Wissenschaftlerinnen diskutiert. So werden die Jugendlichen noch stärker in den Forschungsprozess einbezogen und dazu angeregt, die Ergebnisse kritisch zu reflektieren. Ergebnisse Bereits seit 2016 erforschen und kartieren Jugendliche erfolgreich die Plastikverschmutzung in und an Flüssen in Deutschland. Als Teil des Bürgerforschungsprojekts Plastikpiraten schlüpfen sie in die Rolle von Wissenschaftler:innen und untersuchen den Zustand unserer Flüsse. Bereits über 1.300 Datensätze (Stand: Juni 2023) zum Müllvorkommen wurden auf diese Weise zusammengetragen.
Kurzbeschreibung BKV hat mit Unterstützung vom Fachverband der Chemischen Industrie Österreichs - FCIO, von der IK Industrievereinigung Kunststoffverpackungen e.V., von PlasticsEurope Deutschland e.V. und vom Fachverband Kunststoff- und Gummimaschinen im VDMA - Verband Deutscher Maschinen- und Anlagenbau e.V. ein Modell entwickelt, das erstmals eine systematische Erfassung der Haupteintragsquellen von nicht ordnungsgemäß entsorgten Kunststoffabfällen (Littering) in die Meere ermöglicht und die für die Reduzierung und Vermeidung von Kunststoffeinträgen in die Nordsee erforderliche Faktenbasis liefert. In dem Modell werden dominante Quellen und Pfade zum Eintrag von Kunststoff-Litter in die Meere identifiziert. Die entwickelte Methodik berücksichtigt dabei Makro- und Mikrokunststoffe. Die hinterlegte Datenbank erlaubt eine leichte und flexible Anpassung von Variablen und Berechnungen im Modell. Die im Modell verwendeten Faktoren sowie die zugrunde gelegten Annahmen werden kontinuierlich verifiziert und weiterentwickelt. Zunächst wurden nur die Eintragsstrukturen/-pfade der Nordsee und hier nur Land-Sourced Litter betrachtet. Eine Ausdehnung des Modells auf andere Meere und ggf. auf Sea-Sourced Litter ist vorgesehen. In dem Bericht finden sich keine Aussagen im Hinblick auf die Entwicklung von Strategien und Lösungsansätzen zur Vermeidung einer weiteren Vermüllung der Meere. Jedoch können die Ergebnisse des Modells einen wesentlichen Beitrag hierzu leisten. Dies ist für die Umsetzung der Maßnahme UZ5-04 der MSRL von Bedeutung. Ergebnisse Das Modell setzt sich aus einem Bericht und einem Handbuch zusammen. Es ist kostenfrei erhältlich. Es gibt eine deutsche und eine englische Fassung. Die jeweils aktuelle Fassung kann auf der BKV-Website bestellt werden: Link siehe Website
Origin | Count |
---|---|
Bund | 171 |
Land | 37 |
Wissenschaft | 5 |
Type | Count |
---|---|
Ereignis | 23 |
Förderprogramm | 86 |
Messwerte | 2 |
Strukturierter Datensatz | 3 |
Text | 53 |
unbekannt | 27 |
License | Count |
---|---|
geschlossen | 103 |
offen | 89 |
Language | Count |
---|---|
Deutsch | 172 |
Englisch | 40 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 6 |
Dokument | 44 |
Keine | 71 |
Multimedia | 2 |
Webseite | 97 |
Topic | Count |
---|---|
Boden | 192 |
Lebewesen & Lebensräume | 192 |
Luft | 192 |
Mensch & Umwelt | 192 |
Wasser | 192 |
Weitere | 176 |