Die Karte zeigt die Bewertung der Schutzwürdigkeit von Böden in Niedersachsen im Hinblick auf ihre Bedeutung als Archiv der Naturgeschichte. Zu den besonders schutzwürdigen Böden zählen Böden, welche die natürlichen Funktionen sowie die Archivfunktion in besonderem Maße erfüllen. Beeinträchtigungen dieser Funktionen sollen nach Bodenschutzrecht vermieden werden (vgl. §1 BBodSchG). Böden mit hoher naturgeschichtlicher bzw. geowissenschaftlicher Bedeutung geben einen Einblick in Bodenentwicklungen lange vergangener Zeiten und stellen Bausteine zum besseren Verständnis der Natur- und Landschaftsentwicklung dar. Sie liefern auch Informationen über Klima- und Vegetationsverhältnisse. Zu den Böden mit naturhistorischer Bedeutung gehören: - repräsentative Böden (Boden-Dauerbeobachtungsflächen BDF) - Paläoböden - Brauneisengleye mit erhaltener Raseneisensteinschicht - Podsole mit erhaltener Ortsteinschicht - Begrabene Schwarzerden - Begrabene Podsole - Naturnahe Hochmoore des Harzes - Böden aus limnischen Ablagerungen - Böden aus Mudde, ohne Torfauflage - Mächtige Hochmoore mit Torfmächtigkeitkeiten über 2 m - Böden mit stark geschichteten Profilen entlang der Lössgrenze - „Alte“ Waldböden, wenn heutige Nutzung Laubwald - Braunerden mit Tangelhumusauflage Die ausgewiesenen besonders schutzwürdigen Böden auf Basis der BK50 stellen maßstabsbedingt Suchräume dar. Diese können bei Bedarf im Rahmen von großmaßstäbigen Kartierungen detaillierter ausdifferenziert werden. Die Methoden zur Ermittlung der Schutzwürdigkeit von Böden in Niedersachsen sind ausführlich in Geobericht 8 (Bug et al. 2019) beschrieben. Grundlage der Auswertungen ist die Bodenkarte von Niedersachsen 1 : 50 000 (BK50). Zudem wurden Daten des Forstplanungsamtes (historische Waldstandorte), Biotoptypenkartierungen (NLWKN), das Digitale Landschaftsmodell (DLM25) vom LGLN und der Datensatz HIST25 (Historische Landnutzung in Niedersachsen im Maßstab 1:25.000 des LBEG) verwendet.
Zu den besonders schutzwürdigen Böden zählen Böden, welche die natürlichen Funktionen sowie die Archivfunktion in besonderem Maße erfüllen. Beeinträchtigungen dieser Funktionen sollen nach Bodenschutzrecht vermieden werden (vgl. §1 BBodSchG). Böden mit hoher naturgeschichtlicher bzw. geowissenschaftlicher Bedeutung geben einen Einblick in Bodenentwicklungen lange vergangener Zeiten und stellen Bausteine zum besseren Verständnis der Natur- und Landschaftsentwicklung dar. Sie liefern auch Informationen über Klima- und Vegetationsverhältnisse. Darunter fallen Böden mit hoher naturgeschichtlicher Bedeutung sowie Böden, die für das Bundesland Niedersachsen repräsentativ sind (Bodendauerbeobachtungsfläche/BDF). Der Datensatz zeigt Suchräume, also nur die ungefähre Lage, von solchen Böden. Sie beruhen auf Hinweisen aus Erhebungen zur Lage solcher Flächen. Darunter fallen Braunerden mit Tangelhumus (nach Capelle & Caspers, 1998), Paläoböden (diverse Quellen) und Podsole mit Ortstein (Bodenschätzung). Die Aufnahme ist nicht flächendeckend und daher unvollständig. Sie wird kontinuierlich aktualisiert. Die Methoden zur Ermittlung der Schutzwürdigkeit von Böden in Niedersachsen sind ausführlich in Bug et al. (2019) beschrieben. Grundlage der Auswertungen sind die Bodenkarte von Niedersachsen 1 : 50 000 (BK50) und weitergehende Arbeiten des LBEG.
Die zusätzliche Speicherung von Bodenkohlenstoff ist als Klimaschutzmaßnahme zur Reduzierungatmosphärischen CO2 anerkannt. Der Fokus von Forschung und Praxis lag bisher auf der reduzierten oderkonservierenden Bodenbearbeitung, obwohl deren Effekte auf die Kohlenstoffvorräte für Böden meist marginal sind. Bislang wurde die Option der Humusvergrabung - das Einbringen von Kohlenstoff in tiefereBodenhorizonte - als Maßnahme zu Erhöhung der Kohlenstoffvorräte nicht berücksichtigt und ist kaumuntersucht. Zusätzlich sind die Prozesse und Mechanismen der langfristigen Stabilisierung und Speicherungvon Kohlenstoff in Unterböden unzureichend verstanden. Bodennutzung hat zu allen Zeiten auch zur Humusvergrabung geführt. Seit dem 12. Jahrhundert war Ackerbau in Form von Wölbäckern weit verbreitet. Durch das wendende Pflügen zur Mitte eines Ackerschlags entstanden Kämme unter denen fossile Ap-Horizonte vergraben wurden. Seit Erfindung des Dampfpflugs war es möglich, immer tiefer zu pflügen. Das Tiefpflügen wurde zur Melioration von Podsolen, Parabraunerden und später auch Mooren eingesetzt. In den 1960er Jahren wurden in Norddeutschland dutzende landwirtschaftliche Versuche zum Tiefpflügen angelegt.
In Schleswig-Holstein gibt es eine große Zahl von Binnendünen und Flugsandgebieten. Sie wurden in verschiedenen Publikationen schon zu Beginn des 20. Jahrhunderts beschrieben. Deutungsversuche über ihre Genese schlossen sich an. Eine systematische Untersuchung fehlt bisher, vor allem im Hinblick auf ihr Alter herrscht noch keine Einigkeit. Zwar ist allgemein akzeptiert, dass sie im Spätglazial und Frühholozän entstanden sind, über ihre weitere Entwicklung, vor allem seit dem Eingriff des Menschen in den Landschaftshaushalt, besteht noch Unsicherheit. Es gibt deutliche Hinweise auf eine Umgestaltung seit der römischen Eisenzeit, als man mit der Verhüttung von Raseneisenerz begann und großflächig Wälder rodete. Im Mittelalter und während des dreißigjährigen Krieges mag es Aktivitätsphasen äolischer Umlagerung gegeben haben, auch hierfür gibt es Indizien. Sicher hat die Kolonisation der Heidegebiete Jütlands seit Ende des 18. Jahrhunderts die Auswehung von Sanden und Ackerland begünstigt, und auch heute treten hin und wieder Sandstürme auf den Sanderflächen besonders im Landesteil Schleswig auf. Erste Vorarbeiten haben ergeben, dass in verschiedenen Binnendünen mächtige fossile Podsole erhalten sind. An einem Beispiel konnte ein Boden datiert werden. Die Fortsetzung der Untersuchungen hat zum Ziel, Anhaltspunkte für den Landschaftswandel auf den Sandern, in den ehemaligen Schmelzwasserrinnen und dem Elburstromtal zu finden.
Durch den Reaktorunfall in Tschernobyl wurde unter anderem das langlebige radioaktive Isotop Cs-137 freigesetzt und ueber weite Regionen Europas - einschliesslich der norddeutschen Tiefebene - verteilt. Die Verlagerung des Caesiums wird in charakteristischen Boeden Norddeutschlands - Marsch, Moor, Podsol, Pseudogley - verfolgt und die Verfuegbarkeit dieses Nuklides fuer die Pflanze festgestellt. Die Untersuchungen sollen dazu beitragen, die Kenntnisse ueber das Verhalten des Cs in geringen Konzentrationen zu verbessern. Sie sollen ausserdem klaeren helfen, inwieweit Standorteigenschaften - insbesondere hohe Humusgehalte und Kalkgehalt - zur verstaerkten Mobilitaet beitragen. Ergebnisse unmittelbar praktischer Bedeutung koennten in Bezug auf Verbesserung der Vorhersagbarkeit des Cs-Verhaltens in Boeden, auf die Pflanzenverfuegbarkeit des Cs und auf das problem der stark variierenden Angaben zu Transferfaktoren erzielt werden.
Als "röntgenamorph" gelten Feststoffe mit extrem kleinen Kristallgrößen, ausgeprägten Gitterstörungen oder einer ausschließlich vorhandenen atomarer Nahordnung, welche im Vergleich zu kristallinen Feststoffen häufig nur über diffuse Röntgenbeugungsmuster verfügen. In Röntgenbeugungsdiagrammen bleiben diese Feststoffe als erhöhter Signaluntergrund "sichtbar". In Böden existieren anorganische röntgenamorphe Feststoffe (ARF) als Glasphasen, Mineralkristalle mit einer zu geringen Anzahl von sich wiederholenden Struktureinheiten ("schlecht kristalline bzw. "nanokristalline" Minerale) sowie Feststoffen variabler chemischer Zusammensetzung und atomarer Nahordnung ("Mineraloide"). Aufgrund ihrer großen spezifischen Oberflächen und reaktiven Oberflächengruppen steuern ARF in Böden wichtige Prozesse wie etwa Kohlenstoffumsatz, Mineralverwitterung sowie Sorptionsreaktionen von Nähr- und Schadstoffen. Trotz ihrer ökologischen Relevanz sind ARF in Böden unzureichend erforscht. Wissensdefizite existieren hinsichtlich ihrer Natur, Gesamtgehalte, chemischen Zusammensetzung und Verteilung in Böden sowie ihrer Quantifizierbarkeit mit Hilfe nasschemischer Extraktionsverfahren. Um diese Wissenslücken zu schließen, quantifizieren wir ARF in der Feinerde (<2 mm) sowie in Partikelgrößenfraktionen von vier Bodentypen (Braunerde, Parabraunerde, Podsol, Schwarzerde) mittels quantitativer Röntgendiffraktometrie (Rietveld Verfahren). Die chemische Zusammensetzung der ARF wird über Massenbilanzierungen auf Basis der Rietveld-Ergebnisse und chemischer Analysen der Bodenproben ermittelt ("balance sheet method"). Auf dieser Grundlage überprüfen wir, in wie fern gängige selektive Extraktionsverfahren zur Bestimmung "röntgenamorpher" Bodenfestphasen geeignet sind, deren absolute Gehalte und chemische Zusammensetzung in Böden quantitativ zu erfassen. Zusätzlich untersuchen wir röntgenamorphe anorganische Feststoffe (<1 µm) aus ausgewählten Partikelgrößenfraktionen mit Hilfe der analytischen Transmissionselektronenmikroskopie. Insgesamt liefert das Forschungsvorhaben grundlegende Informationen (1) zu Gesamtgehalten von ARF in Böden, ihrer Natur und chemischen Zusammensetzung sowie tiefenabhängigen Verteilung sowie (2) zur Quantifizierbarkeit von ARF mittels selektiver Extraktionsverfahren. Damit bildet dieses Projekt die Grundlage dafür, den Einfluss von ARF auf Bodenfunktionen und -eigenschaften zukünftig detailliert erforschen zu können.
Nachhaltige Landwirtschaft agiert in einem Spannungsfeld zwischen Produktivität und Erhalt der Bodengesundheit. Kupfer wird in großem Umfang als Fungizid und Düngemittel eingesetzt, hat jedoch auch negative Auswirkungen auf die Bodengemeinschaft. Kupfertoxizität wird in der Regel durch Adsorption im Boden und Aufnahme durch Organismen erklärt, aber die Möglichkeit anderer toxischer Pfade, z. B. die Bildung von Radikalen, wird noch nicht in Betracht gezogen. Die Relevanz von Radikalen im Boden wurde zuvor in unseren Studien gezeigt, in denen Nanopartikel auf Kupferbasis bei sehr niedrigen, umweltrelevanten Konzentrationen negative Effekte auf Bodenorganismen hatten, einschließlich Reaktionen in deren antioxidativem System. Überraschenderweise war dies nur bei stark adsorbierenden, tonreichen Böden der Fall, die für die Landwirtschaft sehr relevant sind. Die Kombination von Kupfer und Ton in Böden ist in der Lage, reaktive Sauerstoffspezies (ROS) zu bilden oder weit verbreitete polyaromatische Schadstoffe in umweltbeständige freie Radikale (EPFR) umzuwandeln, die negative Folgen für Bodenorganismen, aber auch für die menschliche Gesundheit haben können. Die Bildung dieser Radikale beruht auf Elektronentransferprozessen, bei denen Übergangsmetalle wie Kupfer oder Eisen (insbesondere in nanopartikulärer Form), Tonminerale und organische Stoffe als Quelle und/oder Transporteur von überschüssigen Elektronen dienen. Alle diese Stoffgruppen kommen natürlich im Boden vor, werden aber auch durch landwirtschaftliche Aktivitäten eingebracht. In diesem Projekt werde ich mehrere repräsentative Stoffgruppen kombinieren, die ein landwirtschaftliches Bodensystem simulieren und für die Radikalbildung relevant sind. Das radikalbildende Potenzial sowohl natürlicher als auch anthropogener Stoffe, d.h. verschiedener Arten von Ton- und Eisenmineralen, organischer Substanz und anthropogenem Kupfer, wird einzeln und in Kombination ermittelt. Die Radikalbildung wird chemisch untersucht, indem die ROS- und EPFR-Bildung in künstlichen Bodenlösungen und Böden gemessen wird, aber auch biochemisch und ökologisch anhand der antioxidativen und Fitness-Reaktion von Springschwänzen (Folsomia candida). Um die Laborergebnisse auf die Freilandsituation zu übertragen, werden die Faktoren, die im Labor als am auffälligsten identifiziert wurden, zur Identifizierung potenzieller radikalbildender Hotspots im Feld verwendet; dabei werden Podsole mit Fluvisolen (schwankendere Redoxbedingungen aufgrund ihrer Nähe zu Flüssen) im Hinblick auf die Korrelation zwischen ihren Bodeneigenschaften und dem Auftreten von ROS und EPFR verglichen. Die Identifizierung der Bodenfaktoren für die Radikalbildung im Labor und auf dem Feld wird Auswirkungen auf den Bodenschutz, die Risikobewertung von Nanopestiziden und die landwirtschaftliche Bewirtschaftung haben und direkte Empfehlungen für eine nachhaltige Bewirtschaftung des Bodens mit Hinblick auf deren Potenzial zur Radikalbildung ermöglichen.
ALETSCH: Dans l'etude de la pedogenese sur les placettes de Luedi, rive gauche du glacier d'Aletsch, il faut attendre 50 ans pour l'apparition d'un ranker alpin. 80 ans pour un ranker ocreux et 110 a 120 ans pour l'apparition des permieres phases d'un sol podzolique, du reste encore mis en doute. Pour la dynamique de la colonisation: vegetation pionniere en groupements tres ouverts avec systeme racinaire tres developpe pendant 20 ans. De 20 a 80 ans: mosaique de groupements imbriques, multitude microstations. Succession de vegetation herbacee arbustive, puis groupements preclimatiques d'especes forestieres favorisees par le developpement d'un tapis muscinal. (FRA)
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Im Berliner Raum verbreitete, durch ihre Nutzung wenig beeinflusste naturnahe Böden mit einer langen Entwicklungsgeschichte sind Parabraunerden, Fahlerden, Braunerden, Rostbraunerden, Podsol-Braunerden, Podsole, Gleye und moorige Böden, welche fast ausschließlich im weniger dicht besiedelten und unbesiedelten städtischen Außenbereich vorkommen. 01.01 Bodengesellschaften Weitere Informationen
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Im Berliner Raum verbreitete, durch ihre Nutzung wenig beeinflusste naturnahe Böden mit einer langen Entwicklungsgeschichte sind Parabraunerden, Fahlerden, Braunerden, Rostbraunerden, Podsol-Braunerden, Podsole, Gleye und moorige Böden, welche fast ausschließlich im weniger dicht besiedelten und unbesiedelten städtischen Außenbereich vorkommen. 01.01 Bodengesellschaften Weitere Informationen
| Origin | Count |
|---|---|
| Bund | 49 |
| Kommune | 1 |
| Land | 50 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 43 |
| Text | 30 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 19 |
| offen | 73 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 91 |
| Englisch | 7 |
| Resource type | Count |
|---|---|
| Bild | 3 |
| Datei | 1 |
| Dokument | 11 |
| Keine | 58 |
| Unbekannt | 3 |
| Webdienst | 6 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 95 |
| Lebewesen und Lebensräume | 83 |
| Luft | 65 |
| Mensch und Umwelt | 88 |
| Wasser | 68 |
| Weitere | 95 |