Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.
Manuelles oder automatisiertes Schweißen ist in der metallverarbeitenden Industrie das maßgebende Fertigungsverfahren. Aufgrund ihrer geringeren Ermüdungsfestigkeit und Lebensdauer im Vergleich zum Grundwerkstoff stellen Schweißverbindungen immer strukturelle Schwachpunkte dar. Die Blechdicken in zyklisch beanspruchten Bauteilen werden über den geringen Ermüdungswiderstand der Schweißverbindung vorgegeben. Aus Untersuchungen ist bekannt, dass die lokale Nahtgeometrie in hohem Maße für die Ermüdungsfestigkeit der Verbindung relevant ist und Risse von einzelnen Schwachstellen mit hoher Kerbwirkung initiieren. Die Identifizierung von geometrischen Schwachstellen mit hoher Kerbwirkung ermöglicht zudem die gezielte Nacharbeit. Ziel des Projekts ist der Aufbau eines Konzeptes für ein automatisierbares und anwenderunabhängiges Verfahren zur in-line (oder nachfolgenden) Inspektion und individuellen Lebensdauerbewertung von Schweißverbindungen auf Basis von 3D-Scans. Besonderes Augenmerk wird auf die Erarbeitung einer technischen Lösung zur Erstellung von 3D-Scans und deren Auswertung an Schweißverbindungen aus Baustahl (S355) durch Metallaktivgasschweißen (MAG) gelegt. JBO beteiligt sich an dem Vorhaben mit seinen Kompetenzen im Bereich Bruchmechanik, Erfahrungen mit Stahlstrukturen im Offshore-Windbereich und der Bereitstellung eines Messgeräts zur Erfassung der Rissausbreitung während der Ermüdungsversuche. In Anlehnung an die Ergebnisse der in-line sowie der probabilistischen Lebensdaueranalyse und basierend auf der Datenbasis werden zahlreiche FE-Untersuchungen zwecks Entwicklung einer ingenieurmäßigen Methode für gängige Anwendungsfälle zur Berücksichtigung von unterschiedlichen Merkmalen der Schweißnahtoberfläche sowie der sich ergebenden Ermüdungsfestigkeit unternommen. Die Ergebnisse der FE-Untersuchungen werden mit zahlreichen Potentialsondenmessungen des Rissfortschritts verifiziert sowie im Anschluss auch auf die Geometrien von Realstrukturen überführt.