API src

Found 1035 results.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Untersuchungen zum Einfluss von geomagnetischer Aktivität auf Zusammensetzung und Zirkulation der Thermosphäre und deren Kopplung in die mittlere und obere Atmosphäre

Neuere Forschungsergebnisse legen nahe, dass Ozon in der mittleren Atmosphäre (10 bis 90 km) von der oberen Atmosphäre beeinflusst werden kann, durch Absinken von NOx (N, NO, NO2) aus Quellregionen in der unteren Thermosphäre (90 bis 120 km) im polaren Winter. Da Ozon eine der wesentlichen strahlungsaktiven Substanzen in der mittleren Atmosphäre ist, können Änderungen im Ozonbudget Temperaturen und Zirkulation der Atmosphäre bis zum Erdboden herunter beeinflussen. Da die Stärke dieser thermosphärischen Einträge mit der geomagnetischen Aktivität variiert, stellen diese winterlichen NOx-Zunahmen einen möglichen Mechanismus der Sonne-Klimakopplung dar. Derzeit sind gängige Chemie-Klimamodelle aber nicht in der Lage, die Quellregion des NOx in der unteren Thermosphäre und den Transport in die mittlere Atmosphäre im polaren Winter realistisch zu simulieren. Um diese Kopplung von der oberen Atmosphäre in die mittlere und untere Atmosphäre in den Modellen realistisch darzustellen, ist eine gute Darstellung der primären Prozesse notwendig: Änderungen der chemischen Zusammensetzung durch präzipitierende Elektronen aus der Aurora, Joule-Heizen, und das daraus folgende Kühlen im infraroten Spektralbereich sowie die Anregung von Schwerewellen. Da in der unteren Thermosphäre angeregte Schwerewellen sich nach oben ausbreiten, kann der letztgenannte Prozess auch einen Einfluss auf die Umgebung von Satelliten in niedrigen Orbits haben. In dem hier vorgeschlagenen Projekt werden wir das gekoppelte Chemie-Klimamodell xEMAC verwenden, welches in seiner derzeitigen Konfiguration bis in die untere Thermosphäre (170 km) reicht, um den Einfluss der verschiedenen mit geomagnetischer Aktivität verbundenen Prozesse auf den Zustand der unteren Thermosphäre, und deren Darstellung in Chemie-Klimamodellen, zu untersuchen. Dazu wollen wir in Zusammenarbeit mit unserem Kooperationspartner an der Jacobs-Universität Bremen die zeitliche und räumliche Variation von Joule-Heizen und Teilchenniederschlag im Modell durch Beobachtungen des Swarm-Instrumentes vorgeben. Sowohl geomagnetisch ruhige als auch sehr aktive Zeiten sollen untersucht werden. Das Modell wird im Rahmen dieses Projektes weiter nach oben erweitert werden, um voraussichtlich in der zweiten Phase des SPPs auch den Einfluss auf die Umgebung von Satelliten zu untersuchen. Der modellierte Einfluss von geomagnetischer Aktivität soll durch adäquate Beobachtungen validiert werden, und Modellergebnisse werden analysiert, um den Einfluss von Joule-Heizen und Teilchenniederschlag auf die chemische Zusammensetzung, Temperatur, und Zirkulation der unteren Thermosphäre sowie deren Kopplung einerseits in die untere und mittlere Atmosphäre, andererseits in die obere Atmosphäre, zu untersuchen. Ziel dieses Projektes ist es, das Verständnis von Sonne-Klimakopplung und die Darstellung der beteiligten Prozesse in Chemie-Klimamodellen zu verbessern, sowie geomagnetische Einflüsse auf die Umgebung von Satelliten zu untersuchen.

MOtivationale und VErhaltensändernde Nachhaltigkeitstechnologien, Teilprojekt A Gestalterische Perspektive

Entwicklung druckloser Wärmespeicher für die effiziente Nutzung industrieller Abwärme

Kohlendioxid-Emissionen im Bedarfsfeld „Wohnen“

<p>Im Bedarfsfeld „Wohnen“ fallen direkte und indirekte Kohlendioxid-Emissionen infolge des Energieverbrauchs an. Direkte Emissionen entstehen durch den unmittelbaren Einsatz von Energie für Heizen und Warmwasserbereitung, indirekte Emissionen bei der Energiebereitstellung für die privaten Haushalte, zum Beispiel für Stromverbrauch bei der Nutzung von Haushaltsgeräten (2020: letzte verfügbare Daten).</p><p>Direkte und indirekte Kohlendioxid-Emissionen</p><p>Die <strong>direkten Kohlendioxid-Emissionen</strong> privater Haushalte im Bedarfsfeld „Wohnen“ fallen unter anderem bei der Verbrennung von Energieträgern für Anwendungsbereiche wie Raumwärme, Warmwasser an. Im Jahr 2005 betrugen sie nach Berechnungen des Statistischen Bundesamtes insgesamt 125,3 Millionen Tonnen (Mio. t). Im Jahr 2020 waren es rund 123,4 Mio. t, das sind 1,5 % weniger. Während es durch effizientere Heizungen und die stärkere Nutzung erneuerbarer Energien zu Energieeinsparungen kommt, bewirkt zum Beispiel der Trend zu höheren Wohnflächen pro Person einen gegenteiligen Effekt. Auch der Trend zu einem erhöhten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Ausstattungsgrad#alphabar">Ausstattungsgrad</a>⁠ der privaten Haushalte macht die Effizienzgewinne weitgehend wieder zunichte.</p><p><strong>Indirekte&nbsp;Emissionen</strong> entstehen bei der Energiebereitstellung für die privaten Haushalte, vor allem bei der Erzeugung von Elektrizität in den Kraftwerken und bei der Erzeugung von Fernwärme in den Heizkraftwerken. Diese Emissionen können anteilig — das heißt entsprechend der Höhe des Energieverbrauchs –&nbsp;den privaten Haushalten zugerechnet werden. 2005 verursachte das Bedarfsfeld „Wohnen“ der privaten Haushalte rund 101 Mio. t indirekte Kohlendioxid-Emissionen. 2020 waren es 75,2&nbsp;Mio.&nbsp;t und damit 25,5 % weniger als 2005.</p><p>In der Summe ergibt sich ein Rückgang der Kohlendioxid -Emissionen der privaten Haushalte im Bedarfsfeld „Wohnen“ von 2005 bis 2020 um rund 12 % (siehe Abb. „Direkte und indirekte Kohlendioxid-Emissionen im Bedarfsfeld "Wohnen").</p><p>&nbsp;</p><p>„Raumwärme“ dominiert im Bedarfsfeld „Wohnen“ die Kohlendioxid-Emissionen</p><p>Die Emissionen der privaten Haushalte können den einzelnen Anwendungsbereichen wie Raumwärme, Warmwasser und sonstiger ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ sowie mechanischer Energie und Beleuchtung zugeteilt werden.</p><p>Besonders die Energiebereitstellung für die Nutzung von Raumwärme verursacht hohe Kohlendioxid-Emissionen. Im Bereich „Raumwärme – temperaturbereinigt“ fielen im Jahr&nbsp;2020 insgesamt 144 Millionen&nbsp;Tonnen (Mio. t) <strong>direkte und indirekte Kohlendioxid-Emissionen</strong> an. Im Jahr 2005 waren es 150 Mio. t Kohlendioxid-Emissionen. Dabei verursachte die Erzeugung von Raumwärme im Jahr 2020 mit rund 73 % fast drei Viertel der Kohlendioxid-Emissionen im Bereich Wohnen. An zweiter Stelle folgte mit rund 12 % die Warmwasserbereitung. Der Betrieb von Elektrogeräten, Informations- und Kommunikationstechnologie machte 8 % der Kohlendioxid-Emissionen aus (siehe Abb. „Kohlendioxid-Emissionen nach Anwendungsbereichen im Bedarfsfeld „Wohnen“ 2018“). Private Haushalte haben wie schon beim Energieverbrauch auch erheblichen Einfluss auf den Kohlendioxid-Ausstoß durch:</p>

WFS Energieeinsparpotenzial Prozesswärme - kommunale Wärmeplanung Hamburg

Web Feature Service (WFS) zum Thema Energieeinsparpotenzial Prozesswärme - kommunale Wärmeplanung Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

WMS Energieeinsparpotenzial Prozesswärme - kommunale Wärmeplanung Hamburg

Web Map Service (WMS) zum Thema Energieeinsparpotenzial Prozesswärme - kommunale Wärmeplanung Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Energieeinsparpotenzial Prozesswärme - kommunale Wärmeplanung Hamburg

Der Datensatz zeigt die Energieeinsparpotenziale bei Prozessen. Zur Wahrung von Geschäftsgeheimnissen und aus Datenschutzgründen sind die Daten auf Gebietsebene aggregiert.

Bau und Betrieb einer Biogasanlage zur gemeinsamen Vergärung von Wirtschaftsdüngern mit anschließender Aufbereitung zu Biomethan

Das Verbundvorhaben zwischen der Bioenergy Concept GmbH und des CC4E der HAW Hamburg hat zum Ziel, eine innovative Modell- und Demonstrationsanlage im Landkreis Lüneburg zu realisieren, die Wirtschaftsdünger von mehreren Landwirtschaftsbetrieben zentral zu Biogas vergärt und weiter zu Biomethan aufbereitet. Die hierfür nötige Prozesswärme wird durch den Betrieb einer Pyrolyse erzeugt. Der Einsatz ligninhaltiger Reststoffen und die Produktion von Biokohle stellen ein nachhaltiges und ökologisch zukunftsfähiges Verfahren dar. Das produzierte Biomethan soll primär im Verkehrssektor eingesetzt werden. Als potentieller Hauptabnehmer hat der Landkreis Lüneburg bereits sein Interesse bekundet, das Biomethan in der vom Landkreis betriebenen Elbfähre Bleckede - Neu Darchau und zukünftig auch im ÖPNV zu nutzen. Die als Nebenprodukt pyrolytisch erzeugte Biokohle soll zur Tierfütterung und zur Stabilisierung der Prozessbiologie im Fermenter eingesetzt werden. Sie trägt so zur Aufwertung der Gärreste und zum Humusaufbau der landwirtschaftlichen Flächen bei. Das Ziel der wissenschaftlichen Begleitung seitens der HAW ist es, die Akzeptanz zur Vergärung von Wirtschaftsdüngern zu untersuchen und ggfs. zu stärken. Für die Grundlage des dafür angestrebten Wissenstransfers in alle beteiligten Gruppen soll eine umfangreiche Ausarbeitung bestehender Forschungsergebnisse dienen. Zusätzlich wird mittels Nährstoffanalysen von Edukten und Produkten ein praxisspezifischer Kenntnisstand geschaffen, insbesondere der durch Gärung bedingten, veränderten Düngeeigenschaften von Wirtschaftsdünger. Ferner soll ein allgemeiner Leitfaden zur energetisch-stofflichen Nutzung von Wirtschaftsdüngern in Biogasanlagen geschaffen werden. Eine Bilanzierung von Treibhausgasemissionen der Demonstrationsanlage bilden die Grundlage für mögliche Erweiterungen. Das Verbundvorhabens ist auf drei Jahre vom 07/2023 - 6/2026 ausgelegt und hat ein angestrebtes Fördervolumen von 1,38 Mio €.

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung, Teilvorhaben: Entwicklung und Erprobung Rauchgasreinigung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Mit dem Vorhaben BioBrauS wird das Ziel verfolgt, biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, energetisch zu verwerten. Dadurch sinkt der Verbrauch fossiler Primärressourcen wie Braunkohle, deren Einsatz mit einem hohen CO2-Ausstoß verbunden ist. Dazu soll ein Brennstoff aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist entwickelt und mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung verwertet werden. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und die Optimierung von Verbrennungseigenschaften und Prozessparametern der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärresten und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung, Teilvorhaben: Auswahl und Bewertung organsicher Reststoffe sowie analytische Begleitung Mahlung, Rauchgasreinigung und Verbrennung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

1 2 3 4 5102 103 104