API src

Found 9184 results.

Similar terms

s/re/EE/gi

CO₂-Emissionen pro Kilowattstunde Strom 2024 gesunken

<p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p><p>Hinweis: Die im Diagramm gezeigten Daten sind in der Publikation "Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2024" zu finden.</p>

Inorganic geochemistry of sedimentary rocks in the catchment of river Thuringian Saale during the last 600 Ma

A literature retrieval was performed for whole rock geochemical analyses of sedimentary, magmatic and metamorphic rocks in the catchment of River Thuringian Saale for the past 600 Ma. Considering availability and coincidence with paleontological an facies data the following indicators seem suitable to detect environmental and climatic changes: biogenic P for Paleoproductivity, STI Index for weathering intensity, Ni/Co-ratio for redox conditions, relative enrichments of Co, Ba and Rb versus crustal values for volcanic activity at varying differentiation. The Mg/Ca-ratio as proxy for salinity is applicable in evaporites. The binary plot Nb/Y versus Zr/TiO2 indicates a presently eroded volcanic level of the Bohemian Massif as catchment area for the Middle Bunter, whereas higly differentiated volcanics provided source material for Neoproterozoic greywackes. A positive Eu-anomaly is limited to the Lower Bunter and implies mafic source rocks perhaps formerly located in the Bohemian Massif.

Energieverbrauch privater Haushalte

<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠.</p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5&nbsp;% (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Kochen, Waschen etc.) bzw. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ der privaten Haushalte. Hauptanwendungsbereiche sind die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Waschen, Kochen etc.) und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>

Freiflächen-Photovoltaikanlagen in Deutschland (Datensatz)

Der rasche Ausbau der erneuerbaren Energiequellen stellt eine große Herausforderung dar, wenn es darum geht, die Energieentwicklung mit konkurrierenden Interessen in Einklang zu bringen. Dies unterstreicht die Notwendigkeit präziser räumlicher Daten, um eine effektive Bilanzierung, Verwaltung oder Bewertung der Einhaltung gesetzlicher Rahmenbedingungen zu ermöglichen. In diesem Beitrag wird ein Zero-Shot-Ansatz zur Extraktion von Parametern von Photovoltaik-Freiflächenanlagen in Deutschland auf der Grundlage von digitalen Orthofotos vorgestellt. Dies ermöglicht die genaue Identifizierung und Abgrenzung wesentlicher räumlicher Parameter, einschließlich des Bodenbedeckungsgrads der Photovoltaikmodule, des Reihenabstands zwischen den Modulreihen und ihrer genauen Ausrichtung. Die Ergebnisse dieser Studie sind in zweierlei Hinsicht bemerkenswert. Erstens erzielt die entwickelte technische Pipeline eine qualitativ hochwertige Segmentierung von Photovoltaik-Modulreihen, wobei über 71 % der Ergebnisse eine zufriedenstellende bis fehlerfreie Segmentierung aufweisen. Zweitens steht der resultierende Datensatz für weitere Analysen zur Verfügung und kann als Ausgangspunkt für die Entwicklung weiterer KI-Modelle zur Überwachung der Dynamik des Ausbaus von Freiflächen-Photovoltaikanlagen dienen. Diese Methodik unterstützt nicht nur die Bewertung der Einhaltung der Vorschriften, sondern verbessert auch die Entscheidungsprozesse an der Schnittstelle zwischen der Entwicklung erneuerbarer Energien und konkurrierenden Interessen, wie z. B. dem Naturschutz.

Solaranlagen 2024

Erneuerbare Energien, also vorrangig Solarenergie, Geothermie, Biomasse und Windkraft, sind als unerschöpfliche Quellen elementar wichtig für die heutige und zukünftige Energieversorgung Berlins. Der Ausbau der Solarenergienutzung wird dabei als besonders wichtiger Baustein in der Klimaschutzstrategie Berlins hervorgehoben. Der Senat von Berlin strebt eine klimaneutrale Energieversorgung der Stadt bis 2045 an. Daher wurde der Ausbau der erneuerbaren Energien, insbesondere die Nutzung der Solarpotenziale, im Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) durch den Berliner Senat beschlossen. Eine wichtige Grundlage, die zum Abbau der bestehenden Hemmnisse der Solarenergie beitragen soll, ist der „Masterplan Solarcity“ . Am 06. Mai 2025 wurde der Masterplan in seiner zweiten Umsetzungsphase 2025-2030 durch die federführende Senatsverwaltung für Wirtschaft, Energie und Betriebe nach einem breiten Beteiligungsprozess veröffentlicht. Der Maßnahmenkatalog ist damit weiterhin die Basis für den weiteren Ausbau der Solarenergie in Berlin. Berlin nähert sich dem Ziel, bis 2035 einen Solarstromanteil von 25% an der Berliner Stromerzeugung zu erreichen ( Masterplan Solarcity ). Seit 2020 werden jährlich Monitoringberichte zum Masterplan Solarcity veröffentlicht (SenWEB 2025). Im Berliner Klimaschutz- und Energiewendegesetz vom 19. August 2021 (EWG Bln 2021) § 19 ist die vermehrte Erzeugung und Nutzung von erneuerbaren Energien auf öffentlichen Gebäuden als Ziel festgesetzt. Die Senatsverwaltung für Wirtschaft, Energie und Betriebe unterstützt insbesondere die Bezirke mit dem Förderprogramm SolarReadiness, unter anderem Statik und Anschlüsse an die Anforderungen von Solaranlagen anzupassen. Durch den so beschleunigten Ausbau von Solaranlagen erfüllt das Land Berlin die Vorbildrolle der öffentlichen Hand. Auf privaten Gebäuden greift außerdem seit dem 01. Januar 2023 bei wesentlichen Dachumbauten sowie bei Neubauten die Solarpflicht nach dem Solargesetz Berlin vom 05. Juli 2021. Bei einer Nutzungsfläche von mehr als 50 Quadratmetern sind Eigentümer:innen zur Installation und zum Betrieb einer Photovoltaikanlage verpflichtet. Weitere Informationen und einen Praxisleitfaden zum Solargesetz finden Sie hier . Zur Unterstützung bei der Erfüllung der Solarpflicht, sowie um die Wirtschaftlichkeit von Photovoltaikanlagen zu verbessern, fördert Berlin mit dem Förderprogramm SolarPLUS als Teil des Masterplan Solarcity den Photovoltaikausbau. So wurden seit Start des Programms im September 2022 bis Mai 2025 24.153 Zuwendungen aus SolarPLUS bewilligt. Im Mai 2019 wurde das Solarzentrum Berlin eröffnet, das als unabhängige Beratungsstelle rund um das Thema Solarenergie arbeitet ( Solarzentrum Berlin ). Das Zentrum wird von der Deutschen Gesellschaft für Sonnenenergie (DGS), Landesverband Berlin Brandenburg, betrieben und von der Senatsverwaltung für Wirtschaft, Energie und Betriebe als Maßnahme des Masterplans Solarcity finanziert. Auf Bundesebene wurden durch das Jahressteuergesetz 2022 die Umsatzsteuer für Lieferungen sowie die Installation von Solarmodulen, einschließlich der für den Betrieb notwendigen Komponenten und der Speicher, auf 0 Prozent gesenkt (JStG 2022, UStG § 12 Abs. 3). Diese Regelung betrifft Anlagen auf Wohngebäuden, öffentlichen Gebäuden und Gebäuden, die für dem Gemeinwohl dienende Tätigkeiten genutzt werden. Die Voraussetzungen für die Befreiung gelten als erfüllt, wenn die Anlagenleistung 30kWp nicht überschreitet. Der Nullsteuersatz gilt seit dem 1. Januar 2023. Am 15. Mai 2024 ist das Solarpaket I in Kraft getreten und hat Maßnahmen eingeführt, die den Ausbau der Photovoltaik (PV) in Deutschland erleichtern und beschleunigen soll. Ein Fokus liegt dabei auf sogenannten Balkonkraftwerken, also steckerfertigen Solaranlagen für den Eigengebrauch. Zusätzlich wurde ermöglicht, dass Solarstrom vom eigenen Dach vergünstigt an Mieterinnen und Mieter weitergegeben werden kann. Überschussstrom, der nicht selbst genutzt wird, kann kostenfrei und ohne Vergütung an Netzbetreiber abgegeben werden, wodurch Betreiber kleinerer Anlagen entlastet werden. Anlagenzertifikate sind bei größeren Leistungen (ab 270 kW Einspeisung oder 500 kW Erzeugung) erforderlich. Zum Stand Ende 2024 liegt der Solarstromanteil in Berlin bei 4,7 Prozent (SenWEB2025). Da die räumliche Darstellung und Nutzung von energierelevanten Daten, wie z. B. Solardaten, in Berlin zuvor uneinheitlich und durch verschiedene Angebote realisiert wurde, steht mit dem Energieatlas Berlin seit Juli 2018 ein Fachportal zur Unterstützung der Energiewende bereit, das die wichtigsten Daten benutzerfreundlich und anschaulich präsentiert sowie regelmäßig aktualisiert. Die im Umweltatlas an dieser Stelle dargestellten Inhalte für Photovoltaik (PV), d.h. der direkten Umwandlung von Sonnenenergie in elektrische Energie, und Solarthermie (ST), d.h. der Wärmegewinnung aus der solaren Einstrahlung, beziehen sich auf die im Energieatlas veröffentlichten Daten und deren Erfassungsstände: 07.10.2024 für die Standortdaten der Photovoltaik-Anlagen und 31.12.2015 bzw. 29.03.2023 (aggregierte BAFA-Daten) für diejenigen der Solarthermie. Im Rahmen der Fortführung des Energieatlas Berlin werden die Aktualität und Güte der Daten im Bereich der Solaranlagen, vor allem derjenigen mit Photovoltaik, kontinuierlich verbessert. Im Vergleich zur Solarthermie gibt es in Berlin deutlich mehr erfasste Photovoltaikanlagen. So wurden bis zum 31.12.2024 41.723 Anlagen installiert, die zusammen eine installierte Leistung von rund 380,6 MWp aufweisen. Der darüber jährlich zu produzierende Stromertrag kann nur geschätzt werden und wird bei ca. 343 GWh/a liegen (abzüglich 5 % bei der Generatorleistung und durchschnittlichem Stromertrag von 900 kWh/a pro kW). Theoretisch können mit dieser Leistung rund 131.000 Haushalte mit einem angenommenen mittleren Stromverbrauch von je 2.500 kWh/a versorgt werden. Seit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Auswertungen. Abbildung 1 verdeutlicht die unterschiedlichen Ausbauzahlen je nach Bezirk (Abb. 1a), vor allem Stadtgebiete mit großräumiger Einzel- und Zweifamilienhausbebauung zeigen die größten Anteile. Dazu passend überwiegt mit rund 37.438 von 38.798 Anlagen die geringste Leistungsklasse mit bis zu 30 kWp (Abb. 1b), die auf kleinen Dächern und Balkonkraftanlagen bevorzugt eingesetzt werden. Im Jahr 2019 stieg der jährliche Zuwachs für Anlagen nach dem EEG erstmals wieder auf über 100.000 neuen Anlagen. Zum 01. Juli 2022 wurde die EEG-Umlage auf Null gesetzt und mit der EEG-Novelle 2023 komplett abgeschafft. Im Jahr 2024 wurden nach Daten der Bundesnetzagentur mit 15.556 neuen Anlagen der bis dahin größte Anstieg verzeichnet. Die aktuellsten Informationen über Photovoltaikanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Abb. 1a: Entwicklung nach Bezirken (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Abb. 1b: Entwicklung nach Leistungsklassen (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Der öffentlichen Hand kommt beim PV-Ausbau eine besondere Vorbildfunktion zu. Mit der Novellierung des Berliner Klimaschutz- und Energiewendegesetzes (EWG Bln) im Jahr 2021 ist bei öffentlichen Neubauten die Errichtung von Solaranlagen auf der gesamten technisch nutzbaren Dachfläche Pflicht. Bei öffentlichen Bestandsgebäuden ist grundsätzlich bis zum 31.12.2024 eine Solaranlage nachzurüsten. Ausnahmen gelten u. a. für Dachflächen, die aufgrund ihrer Lage und Ausrichtung ungeeignet sind oder wenn öffentlich-rechtliche Vorschriften der Errichtung von Solar-Anlagen entgegenstehen. Laut Masterplanstudie zum Masterplan Solarcity Berlin ist das Land Berlin Eigentümerin von 5,4 % der Berliner Gebäude, auf deren Dachfläche 8,3 % des Solarpotenzials entfällt (SenWEB 2019). Eine Übersicht über den aktuellen Stand des Solaranlagenausbaus auf öffentlichen Gebäuden in Berlin ist über den folgenden Link im Energieatlas einsehbar: https://energieatlas.berlin.de/?permalink=PGieokF . Auf den öffentlichen Gebäuden Berlins befinden sich 1029 PV-Anlagen mit einer gesamten installierten Leistung von 64,6 MWp (Stand 31.12.2024, Solarcity Monitoringbericht). Es entfielen im Jahr 2024 ca. 17 % der installierten Leistung auf PV-Anlagen auf öffentlichen Gebäuden des Landes Berlin (Erfassungsstand 21.12.2024). Die meisten der 42.723 PV-Anlagen in Berlin befinden sich auf Gebäuden, die natürlichen Personen gehören (92 %). Dabei ist zu beachten, dass zwar die Gebäude Eigentum von natürlichen Personen sind, die PV-Anlagen jedoch nicht zwangsläufig ihnen gehören müssen, weil Gebäudeeigentümer ihre Dachfläche zur Nutzung an Dritte verpachten können. Auf den Gebäuden von Unternehmen und Genossenschaften sind 5 % der PV-Anlagen installiert. Die PV-Anlagen in Eigentum von natürlichen Personen machen einen Anteil von etwa 55 % der gesamten installierten Leistung aus, weitere 31,3 % entfallen auf PV-Anlagen auf Gebäuden von Unternehmen und Genossenschaften. Diese beiden Akteursgruppen zusammen sind demnach für den Großteil der installierten PV-Leistung verantwortlich. Abb. 2: Eigentümerstruktur als Anteil an der Anzahl der Anlagen sowie an der installierten Leistung (Datenstand 31.12.2024, Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Mit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Darstellungen. Im Land Berlin gab es zum Stand 31.12.2024 rd. 8.900 solarthermische Anlagen. Derzeit wird deren Zubau nicht für Berlin erfasst. Weitere Lücken ergaben sich durch die Übergabe der Förderung von Solarthermieanlagen von der BAFA an die KfW. Die Entwicklung in Abbildung 3 verdeutlicht, dass sich der Zuwachs an Neuinstallationen ab etwa 2013 im Vergleich zu den Vorjahren stark verringert hat. Insgesamt zeigt sich somit seitdem ein abnehmender Trend. Hauptsächlich werden solarthermische Anlagen in Berlin für die Warmwasserbereitung sowie zur Heizungsunterstützung genutzt. Darüber hinaus gibt es einige größere Solaranlagen für die Trinkwasser- und Schwimmbadwassererwärmung sowie für solare Luftsysteme und Klimatisierung. Vergleichbar der Verteilung bei den PV-Anlagen ist ein eindeutiger Schwerpunkt in den Außenbereichen der Stadt in den dort noch überwiegend vorhandenen landschaftlich geprägten Siedlungstypen sichtbar (vgl. Darstellung auf Postleitzahlebene im Geoportal Berlin , Karte Solaranlagen – Solarthermie, Ebene „Summe der solarthermischen Anlagen pro Postleitzahl“). Abb. 3: Entwicklung solarthermischer Anlagen im Land Berlin nach Anlagenanzahl pro Bezirk (Erfassungsstand 20.02.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Aufgrund der lückenhaften Erfassung von Anlagen für Warmwasserbereitung kann von einer höheren Gesamtanzahl solarthermischer Anlagen in Berlin ausgegangen werden. Für die Mehrheit der Anlagen wurden Flachkollektoren gewählt. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Für die Jahre nach 2015 liegen für Berlin keine Einzelangaben, nur noch höher aggregierte Daten des Bundesamtes für Wirtschaft und Ausfuhrkontrolle (BAFA) vor, die keine Rückschlüsse nach Kollektorarten, Gebäudetypen oder Kollektorflächen mehr zulassen. Der Zubau neuer solarthermischer Anlagen ist in Berlin seit 2013 gegenüber den Vorjahren deutlich gesunken. Die Anzahl der Solarthermieanlagen im Jahr 2024 beläuft sich auf ca. 8.900 Anlagen mit einer Gesamtkollektorfläche von ca. 94.300 m² (SenWEB/Monitoringbericht 2024 zum Masterplan Solarcity). Dieser Wert bildet jedoch nicht vollständig die tatsächliche Anzahl der in den vergangenen Jahren neu errichteten Solarthermieanlagen in Berlin ab, sodass von einem höheren Anlagenbestand auszugehen ist. Deutschlandweit hat sich der Zubau der Thermie-Kollektorfläche seit 2015 verlangsamt und bis zum Jahresende 2024 auf einen Zuwachs von Rd. 0,22 Mio. qm reduziert. Insgesamt flacht die Kurve an Zuwachsfläche und Anlagen seit einigen Jahren deutlich ab (Bundesverband Solarwirtschaft 2024). Die flächendeckende Analyse der solaren Einstrahlung liefert die Grundlage zur Berechnung der nutzbaren Strahlung und wird als Jahressumme dargestellt. (IP SYSCON 2022). Für den Berliner Raum wird vom Deutschen Wetterdienst (DWD) für den aktuellen langjährigen Betrachtungszeitraum 1991-2020 eine mittlere Jahressumme der Globalstrahlung, also der Summe wechselnder Anteile aus direkter und diffuser Sonneneinstrahlung, auf eine horizontale Fläche in Höhe von 1081-1100 kWh/m² angegeben. Der Berliner Raum liegt damit ziemlich exakt im Mittel der in Deutschland vorkommenden Bandbreite an Einstrahlungswerten (vgl. Abb. 4). Im Vergleich der beiden letzten Referenzzeiträume 1981-2010 zu 1991-2020 nahm die solare Einstrahlung im Zuge des Klimawandels in Berlin und Brandenburg um 40 bis 50 kWh/m² pro Jahr, also rund 5 %, zu. Die Einstrahlung auf eine horizontale Fläche wird je nach örtlicher Lage von verschiedenen Faktoren beeinflusst (vgl. Methode). Abb. 4: Mittlere Jahressummen der Globalstrahlung in Deutschland für den langjährigen Zeitraum 1991-2020 (unveränderte Wiedergabe; Quelle: Deutscher Wetterdienst (DWD) 2022)

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p></p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der<strong>Photovoltaik</strong>(PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei<strong>Windenergie</strong>zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Bioenergieanlagen (Landkreis Göttingen)

Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.

Windenergieanlagen (Landkreis Göttingen)

Windenergieanlagen werden als sichere und umweltfreundliche Energieversorgung angesehen. Sie sollen die Versorgung mit erneuerbaren Energien unterstützen und dazu beitragen, die CO2-Emissionen zu senken. Damit soll ein Beitrag geleistet werden, um eine Erderwärmung um mehr als zwei Grad gegenüber der Vorindustrialisierung Mitte des 18. Jahrhunderts noch zu verhindern. Der Datensatz beinhaltet die Standorte der vorhandenen Windenergieanlagen (WEA) im Landkreis Göttingen.

CO2 Bilanzierung

<p>Mithilfe von Energie- und CO2-Bilanzen wird der Ist-Zustand bei Endenergieverbrauch, Einsatz erneuerbarer Energien und CO2-Emissionen in einer Kommune ermittelt und den unterschiedlichen Sektoren und Energieträgern zugeordnet.</p> <p>Das Bilanzierungstool BICO2 BW wurde im Jahr 2010 vom ifeu im Auftrag des Umweltministeriums Baden-Württemberg entwickelt und in einer Pilotphase an Kommunen getestet. Das Tool folgt der BISKO-Systematik (Bilanzierungssystematik Kommunal) und wird durch die KEA BW (Klimaschutz und Energieagentur Baden-Württemberg) bereitgestellt.</p> <p>(Quelle: Stadt Konstanz, Amt für Klimaschutz)</p> <p> </p>

Einzugsbereiche von HVV-Haltestellen Hamburg

Der Datensatz enthält die Einzugsbereiche von Haltestellen des Hamburger Verkehrsverbunds (HVV) im Hamburger Stadtgebiet. Der Einzugsbereich (Realfußwegdistanz) von Fernverkehr, Regionalbahn (RE/RB/AKN), S-Bahn und U-Bahn beträgt 720 m um die Haltestellen, der Einzugsbereich von Bushaltestellen beträgt 480 m um die Haltestellen. Für die zugehörigen Haltestellen ist der Haltestelleneingang bzw. der Bahnsteigzugang maßgeblich. Bei großen Haltestellen gibt es entsprechend z.T. mehrere Haltestellenbereiche je Haltestelle. Der Datensatz enthält zudem verschiedene Attribute, wie z.B. den zugehörigen Haltestellennamen, die HaltestellenID, die Art des Transportmittels, die jeweiligen anfahrenden Liniennummern, die Anzahl der anfahrenden Linien (nur bei den Haltestellen), die Anzahl der Anfahrten pro Tag (nur bei den Haltestellen) und die Anzahl der erschlossenen Einwohner (nur bei den Einzugsbereichen). Der Datensatz wird vom HVV bereitgestellt und jährlich im Laufe des Frühjahrs auf den aktuellen Jahresfahrplan aktualisiert. Quellen für die Auswertung der Einzugsbereiche: Haltestellen des HVV mit dem Stand des jeweiligen Jahresfahrplans Fahrplandaten des HVV mit dem Stand des jeweiligen Jahresfahrplans zugrundeliegendes Fußwegenetz: OSM Aufbereitung aus 2020 zugrundeliegende Einwohnerdaten: Adressdaten aus Melderegister, Statistisches Amt für Hamburg und Schleswig-Holstein, Stand 31.12.2021

1 2 3 4 5917 918 919