API src

Found 90 results.

Hydrologische Modellierung Fulda^Retentionsfähigkeit von Gewässernetzen^Methodenentwicklung und Landschaftsanalyse^Hydrologische Modellierung Nahe, Methodenentwicklung, Potentiale Hochwasserminderung - Koordination

Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Das Vorhaben wird gefördert vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Fördermaßnahme Risikomanagement extremer Hochwasserereignisse (RIMAX) . Bei der zu entwickelnden Methodik sollen mit begrenztem Aufwand aus vorhandenen Daten, wie z.B. ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahme und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Universität Kassel bearbeitet dieses Projekt zusammen mit dem Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland Pfalz, der Universität des Saarlandes, der Technischen Universität Braunschweig und der Technischen Universität Kaiserslautern. Die Projektkoordination wird von Roettcher Ingenieurconsult übernommen. Unter Retention versteht man die abflussabhängige Speicherung von Wasservolumen in einem Gewässerabschnitt. Für den Hochwasserschutz ist es von Bedeutung, inwieweit sich durch die Retention beim Durchgang einer Hochwasserwelle eine Scheitelabminderung oder Laufzeitverzögerung auswirkt. Das Retentionsvolumen ist abhängig von der Überschwemmungsfläche und von dem Wasserstand des Gewässers. Dieser kann durch eine erhöhte Rauheit, z.B. durch Gewässerrenaturierung, angehoben werden, wobei die lokale Hochwassergefahr in Siedlungsgebieten zu beachten ist. Die Ermittlung des Retentionsvolumens erfolgt mit einem hydraulischen Ansatz. Geometrische Eingangsgrößen beziehen sich auf Teileinzugsgebietsgrößen, die Rauheitsbeiwerte auf die Strukturgütekartierung. Das Retentionsverhalten wird über die Retentionszeit K beschrieben, die als mittlere Aufenthaltszeit des Wassers in einem Gewässerabschnitt angesehen werden kann. Bei der Abschätzung des Retentionspotentials werden für das untersuchte Einzugsgebiet positive und negative Referenzquerschnitte berücksichtigt. Die Methodik wird zunächst auf die Nahe (4.060 km2) mit einem vorhandenen Flussgebietsmodell angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda (6.947 km2) angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden, die für den deutschen Mittelgebirgsraum entwickelt wurden, in einem Anwenderhandbuch zusammenfassend beschrieben. Das Fachgebiet Wasserbau und Wasserwirtschaft der Universität Kassel übernimmt im Kooperationsprojekt die Abschätzung des absoluten und aktivierbaren Retentionsvolumens auf Basis einer GIS-gestützten hydraulischen Modellierung.

Hydrologische Modellierung Fulda^Retentionsfähigkeit von Gewässernetzen^Hydrologische Modellierung Nahe, Methodenentwicklung und Landschaftsanalyse

Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.

Retentionsfähigkeit von Gewässernetzen, Hydrologische Modellierung Nahe

Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.

Retentionsfähigkeit von Gewässernetzen^Hydrologische Modellierung Nahe, Hydrologische Modellierung Fulda

Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.

Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE, Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE

Als primäre Ursachen für die derzeit noch großen Unsicherheiten in der operationellen Vorhersage haben sich in der Praxis die noch immer zu unsicheren Niederschlagsvorhersagen für diese Gebiete, Defizite der verwendeten hydrologischen Modelle in der Beschreibung der Abflussbildung auf dieser Skala und der Mangel an verlässlichen Verfahren zur Identifikation kritischer Gebietszustände wie Bodenfeuchte und Schneezustand erwiesen. Aus dieser Erkenntnis ergeben sich in Verbindung mit der zusätzlich angestrebten Verbesserung der Frühwarnung (bzgl. Ort, Zeit, Menge und Intensität des Ereignisses) und des Hochwassermanagements (bzgl. Speichersteuerung, Schadenswarnung, Alarmplan) die Schwerpunkte (Arbeitspakete) des Projektes: 1. Vorwarnung vor kritischen atmosphärischen Situationen und kritischen Gebietszuständen. 2. Operationelle Schätzung und Kurzfristvorhersage des Gebietsniederschlags. 3. Operationelle Vorhersage und Langfristvorhersage des Abflusses. 4. HW-Management: Optimierte Talsperrensteuerung mit besserer Vorwarnung und Vorhersage. 5. Hochwassertraining und Schulung. Das zu entwickelnde Hochwasserwarn- und Vorhersagesystem wird eine mehrstufig angeordnete Kombination unterschiedlicher Warnmodule sein: Am Anfang steht eine Vorwarnung über hochwasserträchtige Wetterlagen für die ausgesuchten Quellgebiete Obere Donau, Obere Iller, Goldersbach und Weißeritz und eine langfristige Vorhersage von Stationsniederschlägen durch angepasstes klimatologisches Downscaling. Durch eine Kombination aus innovativer TDR-Technologie, Georadar und Radarfernerkundung mit einem geeigneten Landoberflächenmodell soll ferner der Gebietsfeuchte- und -schneezustand ermittelt werden (AP1). Anschließend und zentral (AP2) erfolgt die Schätzung des hochwasserrelevanten Niederschlagfelds durch eine Kombination von Niederschlagsradar und Bodenbeobachtung für den Simulationsbetrieb sowie eine Kurzfristvorhersage des lokalen Niederschlagsgeschehens über eine Dauer von 2-3h. In diesem Zusammenhang wird ein selbstlernendes Werkzeug zur automatischen Fehlerkorrektur der LM-Vorhersage für den Prognosezeitraum von 3 bis 48 Stunden entwickelt. Am Ende der Warnkette steht die Vorhersage des Hochwasserabflusses aus den betroffenen Gebieten mit den zuvor gewonnenen Anfangs- und Randbedingungen des Niederschlags und des Gebietszustands (AP3). Im Arbeitspaket 4 werden auf Basis der verbesserten Vorhersagen des Niederschlag-Abflussgeschehens die Möglichkeiten analysiert, das Hochwasserrisiko unterhalb der Talsperren durch eine optimale Steuerung zu reduzieren. Es erfolgt eine Quantifizierung der Schäden, die sich für die unterschiedlichen Nutzer (Hochwasserschutz, Trinkwasserversorgung, Niedrigwasseraufhöhung, Energieerzeugung, touristische Nutzung) und die anliegenden Ortschaften unterstrom aus der Talsperrensteuerung ergeben, um eine Steuerung mit möglichst geringem Schaden zu erreichen. Das Paket 5 dient der Schulung der Landesbehörden in der Nutzung der entwickelten Module.

Teilvorhaben 4: Datenmanagment und Visualisierung^Teilvorhaben 2: Schadenspotenziale: Gebäudetypologisch-stadtstrukturelle Untersuchungen^Teilvorhaben 3: Untersuchung der Kommunikation über Grundhochwasser vor dem Hintergrund des Klimawandels^Entwicklung Multisequenzieller Vorsorgestrategien für grundhochwassergefährdete Urbane Lebensräume - MULTISURE, Teilvorhaben 1: Gefahren- und Schadenspotenziale Grundwasser

Ziel: Entwicklung und Validierung von Methoden zur Abschätzung und Bewertung von Schadenspotenzialen und Gefahren aus extremhochwasserbedingten Grundwasserständen in urbanen Gebieten am Beispiel des Dresdner Grundwasserleiters. 2. Arb.-plan: (1) Erarbeitung und Umsetzung einer Methodik zur grundwasserbezogenen Gefahrenbewertung und -darstellung auf der Grundlage grundwasserdynamischer Parameter sowie unter besonderer Berücksichtigung der unterschiedlichen grundwasserschadensrelevanten bauarten- und baualtersbezogenen Typologie für unterirdisch gelegene Gebäudeteile und unterirdische urbane Infrastrukturen. (2) Anwendung der Methodik zur Gefahrenausweisung an realen Schäden (Augusthochwasser 2002). (3) Übertragung der entwickelten Methodik der Gefahrendarstellung auf unterschiedliche Gefahrenszenarien (4) Ableitung einer Methodik für die Ausweisung von grundhochwasserbezogenen Risiken, Schutzzielen und Restrisiken. 3. Verwertung der Methodik zur Risikovorsorge bezüglich hochwasserbedingtem Grundhochwassers durch betroffene Kommunen. Ergänzung zu bestehenden auf das Oberflächenwasser ausgerichteten Hochwasservorsorgeplänen.

Teilprojekt 2: Methodenentwicklung zur Bestimmung der Unsicherheiten von Niederschlags-Abfluss-Modellen^HORIX - Entwicklung eines operationell einsetzbaren Expertensystems zum Hochwasserrisikomanagement unter Berücksichtigung der Vorhersageunsicherheit^Teilprojekt 6: Quantifizierung der Unsicherheiten und Abhängigkeiten der Modellparameter^Teilprojekt 4: Niederschlagsvorhersage und Expertensystem - Teilprojekt 5: Unsicherheiten hydraulischer Modelle^Teilprojekt 3: tematischer Modellvergleich^Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz (EXTRA) - Teilprojekt C: Integration der Boden- und Satellitendaten für den Einsatz in einem operationellen Analyse- und Entscheidungswerkzeuges - Teilprojekt B: Statistische Analyse der Ombrometerdaten, Teilprojekt 1: Projektleitung, Modellkopplung und Entwicklung des internetbasierten Expertensystems

Ein regelbasiertes Expertensystem zur Hochwasser(HW)-vorhersage bzw. -warnung wird, basierend auf berechneten Szenarien der Modellkette Niederschlagsvorhersage - N-A-Modellierung - hydraulische Modellierung, mit Angabe der Unsicherheiten (Projektschwerpunkt) entwickelt. In Abhängigkeit der Wettervorhersage und des Gebietszustands werden wahrscheinliche Verläufe des vorhergesagten HW mittels dynamischer Überschwemmungskarten bereitgestellt. Analyse der Vorhersageunsicherheit von Extremniederschlägen und Generierung von N-Szenarien; N-A-Modellierung inkl. Parameteroptimierung, systematische Modellvergleich und Methodenentwicklung zur Unsicherheitsbestimmung; Aufbau von Wellenablaufmodellen, Vergleich mit 2-D-Berechnungen; Quantifizierung der Unsicherheiten aller Elemente der Modellkette; Entwicklung des fuzzy-basierten Expertensystems zur HW-Vorhersage mit Unsicherheitsangaben; Kommunikation und Nutzeroberfläche GIS-aufbereitet über Internetplattform. Anwenderfreundliches robustes, auch für Trainingszwecke nutzbares operationelles Werkzeug mit übertragbarer Methodik; Unsicherheitsvermittlung verbessert HW-Management durch bessere Warnungen und Risikoabschätzung.

Methoden zur Vorsorge und Analyse von großflächigen Hochwasserschäden mittels Radarsatelliten (SAR-HQ)

Ziel dieses Forschungsvorhabens ist es, dedizierte Methoden und Werkzeuge zu entwickeln sowie zu implementieren, die es erlauben, zeitnah und hoch präzise, TerraSAR-X Satellitendaten aber auch andere Radarsatellitensensoren für das Hochwassermanagement zu Akquirieren, Auszuwerten und die gewonnene Information für das Hochwasserrisikomanagement sowie die Schadensabschätzung verfügbar zu machen. Methoden zur zeitnahen Akquisition (technisch-logistische Realisierung von Aufnahmen, Methoden und Werkzeuge zur flurstückgenauen Kartierung und Analyse von dynamischen Flutsituationen bei großen Überschwemmungssituationen, Fortgeschrittene Verfahren zur semi-autom. und autom. Wasser- und Hochwasserdetektion Das hier vorgeschlagene Forschungsvorhaben steht im direkten Bezug zum vom BMBF geförderten Hochwasserforschungsprogramm im Kontext der Risikoanalysen sowie der Entwicklung von wissenschaftlich-technischen Verfahren für verbesserte Hochwassermanagementkonzepte. Die Projektergebnisse werden eine flurstückgenaue Erfassung von Überschwemmungsflächen ermöglichen, welche bis dato nur per Zufall und bei gutem Wetter (ohne Wolkenbedeckung) von Flugzeugbefliegungen aus möglich waren.

Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE^Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE^Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE, Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE

Als primäre Ursachen für die derzeit noch großen Unsicherheiten in der operationellen Vorhersage haben sich in der Praxis die noch immer zu unsicheren Niederschlagsvorhersagen für diese Gebiete, Defizite der verwendeten hydrologischen Modelle in der Beschreibung der Abflussbildung auf dieser Skala und der Mangel an verlässlichen Verfahren zur Identifikation kritischer Gebietszustände wie Bodenfeuchte und Schneezustand erwiesen. Aus dieser Erkenntnis ergeben sich in Verbindung mit der zusätzlich angestrebten Verbesserung der Frühwarnung (bzgl. Ort, Zeit, Menge und Intensität des Ereignisses) und des Hochwassermanagements (bzgl. Speichersteuerung, Schadenswarnung, Alarmplan) die Schwerpunkte (Arbeitspakete) des Projektes: 1. Vorwarnung vor kritischen atmosphärischen Situationen und kritischen Gebietszuständen. 2. Operationelle Schätzung und Kurzfristvorhersage des Gebietsniederschlags. 3. Operationelle Vorhersage und Langfristvorhersage des Abflusses. 4. HW-Management: Optimierte Talsperrensteuerung mit besserer Vorwarnung und Vorhersage. 5. Hochwassertraining und Schulung. Das zu entwickelnde Hochwasserwarn- und Vorhersagesystem wird eine mehrstufig angeordnete Kombination unterschiedlicher Warnmodule sein: Am Anfang steht eine Vorwarnung über hochwasserträchtige Wetterlagen für die ausgesuchten Quellgebiete Obere Donau, Obere Iller, Goldersbach und Weißeritz und eine langfristige Vorhersage von Stationsniederschlägen durch angepasstes klimatologisches Downscaling. Durch eine Kombination aus innovativer TDR-Technologie, Georadar und Radarfernerkundung mit einem geeigneten Landoberflächenmodell soll ferner der Gebietsfeuchte- und -schneezustand ermittelt werden (AP1). Anschließend und zentral (AP2) erfolgt die Schätzung des hochwasserrelevanten Niederschlagfelds durch eine Kombination von Niederschlagsradar und Bodenbeobachtung für den Simulationsbetrieb sowie eine Kurzfristvorhersage des lokalen Niederschlagsgeschehens über eine Dauer von 2-3h. In diesem Zusammenhang wird ein selbstlernendes Werkzeug zur automatischen Fehlerkorrektur der LM-Vorhersage für den Prognosezeitraum von 3 bis 48 Stunden entwickelt. Am Ende der Warnkette steht die Vorhersage des Hochwasserabflusses aus den betroffenen Gebieten mit den zuvor gewonnenen Anfangs- und Randbedingungen des Niederschlags und des Gebietszustands (AP3). Im Arbeitspaket 4 werden auf Basis der verbesserten Vorhersagen des Niederschlag-Abflussgeschehens die Möglichkeiten analysiert, das Hochwasserrisiko unterhalb der Talsperren durch eine optimale Steuerung zu reduzieren. Es erfolgt eine Quantifizierung der Schäden, die sich für die unterschiedlichen Nutzer (Hochwasserschutz, Trinkwasserversorgung, Niedrigwasseraufhöhung, Energieerzeugung, touristische Nutzung) und die anliegenden Ortschaften unterstrom aus der Talsperrensteuerung ergeben, um eine Steuerung mit möglichst geringem Schaden zu erreichen. Das Paket 5 dient der Schulung der Landesbehörden in der Nutzung der entwickelten Module.

Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE^Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE, Operationelle Abfluss- und Hochwasservorhersage in Quellgebieten - OPAQUE

Als primäre Ursachen für die derzeit noch großen Unsicherheiten in der operationellen Vorhersage haben sich in der Praxis die noch immer zu unsicheren Niederschlagsvorhersagen für diese Gebiete, Defizite der verwendeten hydrologischen Modelle in der Beschreibung der Abflussbildung auf dieser Skala und der Mangel an verlässlichen Verfahren zur Identifikation kritischer Gebietszustände wie Bodenfeuchte und Schneezustand erwiesen. Aus dieser Erkenntnis ergeben sich in Verbindung mit der zusätzlich angestrebten Verbesserung der Frühwarnung (bzgl. Ort, Zeit, Menge und Intensität des Ereignisses) und des Hochwassermanagements (bzgl. Speichersteuerung, Schadenswarnung, Alarmplan) die Schwerpunkte (Arbeitspakete) des Projektes: 1. Vorwarnung vor kritischen atmosphärischen Situationen und kritischen Gebietszuständen. 2. Operationelle Schätzung und Kurzfristvorhersage des Gebietsniederschlags. 3. Operationelle Vorhersage und Langfristvorhersage des Abflusses. 4. HW-Management: Optimierte Talsperrensteuerung mit besserer Vorwarnung und Vorhersage. 5. Hochwassertraining und Schulung. Das zu entwickelnde Hochwasserwarn- und Vorhersagesystem wird eine mehrstufig angeordnete Kombination unterschiedlicher Warnmodule sein: Am Anfang steht eine Vorwarnung über hochwasserträchtige Wetterlagen für die ausgesuchten Quellgebiete Obere Donau, Obere Iller, Goldersbach und Weißeritz und eine langfristige Vorhersage von Stationsniederschlägen durch angepasstes klimatologisches Downscaling. Durch eine Kombination aus innovativer TDR-Technologie, Georadar und Radarfernerkundung mit einem geeigneten Landoberflächenmodell soll ferner der Gebietsfeuchte- und -schneezustand ermittelt werden (AP1). Anschließend und zentral (AP2) erfolgt die Schätzung des hochwasserrelevanten Niederschlagfelds durch eine Kombination von Niederschlagsradar und Bodenbeobachtung für den Simulationsbetrieb sowie eine Kurzfristvorhersage des lokalen Niederschlagsgeschehens über eine Dauer von 2-3h. In diesem Zusammenhang wird ein selbstlernendes Werkzeug zur automatischen Fehlerkorrektur der LM-Vorhersage für den Prognosezeitraum von 3 bis 48 Stunden entwickelt. Am Ende der Warnkette steht die Vorhersage des Hochwasserabflusses aus den betroffenen Gebieten mit den zuvor gewonnenen Anfangs- und Randbedingungen des Niederschlags und des Gebietszustands (AP3). Im Arbeitspaket 4 werden auf Basis der verbesserten Vorhersagen des Niederschlag-Abflussgeschehens die Möglichkeiten analysiert, das Hochwasserrisiko unterhalb der Talsperren durch eine optimale Steuerung zu reduzieren. Es erfolgt eine Quantifizierung der Schäden, die sich für die unterschiedlichen Nutzer (Hochwasserschutz, Trinkwasserversorgung, Niedrigwasseraufhöhung, Energieerzeugung, touristische Nutzung) und die anliegenden Ortschaften unterstrom aus der Talsperrensteuerung ergeben, um eine Steuerung mit möglichst geringem Schaden zu erreichen. Das Paket 5 dient der Schulung der Landesbehörden in der Nutzung der entwickelten Module.

1 2 3 4 57 8 9