Das Forschungsvorhaben soll beitragen zur Rekonstruktion der pleistozänen und holozänen Landschafts- und Klimageschichte des Muksu-Tals bis hinauf zum Fedtschenkogletschers im Pamir-Gebirge, sowie jener der umgebenden Täler wie Sauksay und Balandkijk. Insbesondere interessiert uns die Klärung offener Fragen bezüglich (i) des Ausmaßes der jüngeren Schwankungen der Fedtschenkogletscherzunge (ii) der Lage der tiefsten Eisrandlagen und (iii) des Nachweises mehrerer weit ins Tal reichender spätpleistozäner Gletschervorstöße. Hierzu werden verschiedene Methoden der absoluten und relativen Alterdatierung von glazialen Ablagerungen eingesetzt wie Radiocarbonanalysen, Thermolumineszenzanalysen, Bestimmung kosmogener Nuklide sowie glazialmorphologische, bodengeographische, pollenanalytische, dendrochronologische und lichenometrische Untersuchungen. Umfangreiche Erfahrungen aus den dem Pamir nördlich angrenzenden Gebieten (NW-Tienshan, Alai-Kette und Hissar-Gebirge) zeigen, daß dieser Ansatz gut geeignet ist zur Gliederung der holozönen und spätpleistozänen Vergletscherung in den genannten zentralasiatischen Gebirge. Zudem konnten wir interglaziale Bodenbildungen nachweisen und fanden Hinweise auf eine intensive mittelpleistozäne Vergletscherung.
Oligozäne und Miozäne Sedimentfolgen aus der Taatsiin Gol und Taatsiin Tsagaan Nuur Region in der Zentral-Mongolei sind von außergewöhnlicher Bedeutung: hier liegen Basalte in Sedimenten der Hsanda Gol- und Loh Formation eingebettet, und die höchsten Fossilkonzentrationen finden sich zusammen mit Caliche und Paläoböden. Im Rahmen von Vorläuferprojekten wurde ein Stratigraphie-Konzept erarbeitet, das auf der Evolution von Säugetieren und auf radiometrischen Basalt-Altern beruht. 40Ar / 39Ar-Datierungen ergaben drei Altersgruppen von Basalten, eine Basalt I-Gruppe aus dem Früh-Oligozän (vor etwa 31.5 Millionen Jahren), eine Basalt II-Gruppe aus dem Spät-Oligozän (vor etwa 28 Millionen Jahren) und eine Basalt III-Gruppe aus dem Mittel-Miozän (vor etwa 13 Millionen Jahren). Das Taatsiin Gol-und Taatsiin Tsagaan Nuur Gebiet ist heute Schlüsselregion für die Oligozän-Miozän Stratigraphie der Mongolei und ist Bezugspunkt für internationale Korrelationen. Im neuen Projekt werden Klimaveränderungen im Oligozän und Miozän der Mongolei und ihre Auswirkungen auf Säugetiergemeinschaften und Lebensräume untersucht. Um diese Ziele zu erreichen müssen zahlreiche stratifizierte Caliche Lagen und Paläoböden beprobt und analysiert werden. Wir erwarten uns von Bodenanalysen und von der Interpretation der Signaturen stabiler Isotopen (?18O, ?13C) Hinweise auf Veränderungen von Paläoklima und Lebensräumen im Untersuchungsgebiet. Die stratifizierten und datierten Säugetierfaunen bestehen aus Amphibien, Reptilien und Säugetieren, wobei Hasenartige, Insektenfresser, Nagetiere und Wiederkäuer vorherrschen. Dieser reiche Fossil-Fundus bietet die Möglichkeit zur Analyse von einstigen Wirbeltier-Gemeinschaften, zu entwicklungsgeschichtlichen Studien und palökologischen Interpretationen. Besonderes Interesse gilt der Entwicklung und Funktion von Gebissstrukturen bei kleinen und großen Pflanzen fressenden Säugetieren. Hier kommen Methoden zur Anwendung (Microwear- und Mesowear-Analysen, Zahnschmelzuntersuchungen, Mikro-CT und 3D-Modellierung), die Rückschlüsse auf das Nahrungsspektrum und auf markante Veränderungen von Lebensräumen in dem untersuchten Zeitabschnitt von mehr als 20 Millionen Jahren erlauben. Die Feldarbeit in der Mongolei und die anschließenden wissenschaftlichen Studien werden in nationaler und internationaler Zusammenarbeit durchgeführt. Von diesen Synergien werden die Mongolischen und Österreichischen Forschungseinrichtungen und alle mitwirkenden Personen stark profitieren.
Der Datenbestand enthält aus quickTrueDOP abgeleitete Daten für das INSPIRE-Thema Orthofotografie gemäß INSPIRE-Datenspezifikation. Bei quickTrueDOP (qTrueDOP) handelt es sich um eine TrueDOP-Aufbereitung mit dem Fokus auf eine schnelle (quick) Verfügbarkeit der Daten. Die geometrische Genauigkeit, Radiometrie und inhaltliche Exaktheit entspricht nicht den Anforderungen des Produkt- und Qualitätsstandards (PQS) der AdV. Die Erstellung erfolgt im Zeitfenster der Monate März/April - „Frühjahr“ - und Mai/Juni - „Sommer“ im jährlichen Wechsel.
Dieser Datensatz wurde aus diversen BGR-Befliegungsprojekten in Deutschland zusammengestellt. Die Messgebiete ergänzen den Datensatz zu den Gebieten an der deutschen Nordseeküste. Der BGR-Messhubschrauber (Sikorsky S-76B) wird zur aerogeophysikalischen Erkundung des Erduntergrundes eingesetzt. Das Standardmesssystem umfasst die Methoden Elektromagnetik, Magnetik und Radiometrie. Das aktive Mehrfrequenzmesssystem der Hubschrauber-Elektromagnetik (HEM) besteht aus runden (Durchmesser etwa 0,5 m) Sende- und Empfangsspulen (horizontaler Abstand etwa 8 m) für fünf bzw. ab 2007 sechs Messfrequenzen (0,4 - 130 kHz), die sich in einer Flugsonde etwa 40 m unterhalb des Hubschraubers befinden. Bis 2002 wurde ein HEM-System mit Rechteckspulen (horizontaler Abstand knapp 7 m) und fünf Messfrequenzen verwendet (0,4 - 190 kHz). Das Verhältnis aus Empfangs- zu Sendefeld liefert die elektrische Leitfähigkeit bis etwa 50/150 m Tiefe bei gut/schlecht leitendem Erduntergrund. Die Ergebnisse werden als scheinbarer spezifischer Widerstand (= Halbraumwiderstand) und Schwerpunktstiefe für jede der sechs Messfrequenzen im Bereich von 0,4 bis 130 kHz als Karten dargestellt.
Dieser Datensatz wurde aus diversen BGR-Befliegungsprojekten in Deutschland zusammengestellt. Die Messgebiete ergänzen den Datensatz zu den Gebieten an der deutschen Nordseeküste. Der BGR-Messhubschrauber (Sikorsky S-76B) wird zur aerogeophysikalischen Erkundung des Erduntergrundes eingesetzt. Das Standardmesssystem umfasst die Methoden Elektromagnetik, Magnetik und Radiometrie. Das passive Radiometriemesssystem (HRD) ist im Messhubschrauber eingebaut und besteht aus einem Gammastrahlenspektrometer mit fünf Natriumiodid-Detektoren zur Erfassung der Gammastrahlung. Die Ergebnisse werden als Karten der Totalstrahlung, Ionendosisleistung sowie (Äquivalent-)Gehalte von Kalium, Thorium und Uran am Boden dargestellt.
Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.
Bestimmung der LET-Werte des Strahlenfeldes in 10000-12000m Hoehe und verschiedenen geographischen Breiten. Messungen der Energiedosisanteile und der Strahlenexposition des fliegenden Personals
Vier der größten Massenaussterben im Phanerozoikum (Ende Guadalupian, Perm-Trias, Ende Trias und Ende Kreide) sowie mehrere kleinere Aussterbeereignisse treten gleichzeitig mit kontinentalem Flutbasaltvulkanismus auf. Daher wird angenommen, dass der massive Vulkanismus globale Umweltänderungen mit schneller und signifikanter Erderwärmung und mariner Anoxia verursacht, wodurch die Massenaussterben ausgelöst werden. Allerdings bleibt die Zusammensetzung der klimaändernden Gase (CO2, SO2, CH4 oder Halogene) sowie deren Quelle (Magmenentgasung, Kontaktmetamorphose von Sedimenten, recykeltes Krustenmaterial im Mantel) umstritten. Die Ursachen der Umweltänderungen können besser bestimmt werden, wenn die Zeitpunkte und die Dauer der vulkanischen Eruptionen und der klimatischen und biologischen Ereignisse relativ zueinander bekannt sind. Allerdings treten diese Prozesse in Zeitspannen von weniger als 10^6 Jahren und vermutlich sogar weniger als 10^4 bis 10^5 Jahren auf (vergleichbar mit der aktuellen anthropogenen Treibhausgasemission), d.h. außerhalb der zeitlichen Auflösung von radiometrischen Datierungsmethoden. Daher wollen wir neue Spurenelementproxies für massive vulkanische Eruptionen in Sedimenten entwickeln, mit denen wir die relative Dauer der Ereignisse des Vulkanismus, der Klimaänderung und der Aussterbeprozesse in sedimentären Abfolgen bestimmen können. Volatile Spurenelemente wie Hg, Tl, In, Pb, Bi, Cd, Te, Se, Sn, Cs, Sb und As werden bei vulkanischen Eruptionen in großen Mengen freigesetzt und wurden in vulkanischen Gasen und Sublimaten an aktiven Vulkanen gemessen. Während massiver Eruptionen können sehr große Mengen dieser Elemente in die Atmosphäre gelangen und weit verbreitet in Sedimenten abgelagert werden. Die relative Konzentration von Hg wurde bereits als Proxy für vulkanische Eruptionen in Sedimenten genutzt, wobei allerdings Hg auch in organischem Material in Sedimenten angereichert wird. Das Verhalten der meisten volatilen Elemente wurde bisher nur unzureichend untersucht und daher wollen wir die Konzentrationen aller volatiler Elemente in Sedimentabfolgen der Grenzen des Changhsingian-Induan (Perm-Trias) und Pliensbach-Toarc bestimmen, um die zeitliche Entwicklung des Klimas und der Organismen mit den Eruptionen der Sibirischen und Karoo Flutbasalte zu vergleichen. Die Sedimentabfolgen lassen möglicherweise eine zeitliche Auflösung von weniger als 10^4 Jahren zu. Mit diesen Ergebnissen können wir die Zeitskalen der Effekte von Flutbasalteruptionen auf die Entwicklung des Klimas und des Lebens auf der Erde sowie die Quellen und Zusammensetzung der klimarelevanten Gase bestimmen.
Der radiotoxikologische Status eines betrachteten Oekosystems kann allein aus einer umfassenden Einzelnuklidanalyse abgeleitet werden; hierzu wurden bisher geeignete Verfahren fuer besonders bedenkliche Nuklide (Jod-131/Caesium-137/Zink-65 u.a.) in geeigneter Weise modifiziert und unter praxisnahen Bedingungen am System Flusswasser erprobt; aus dem Nuklidverteilungsmuster koennen Hinweise ueber Herkunft und Alter der Proben erhalten und radiooekologische Auswirkungen geschaetzt werden.
Übergeordnetes Projektziel des Antrags ist die Nutzung multifrequenter und multipolarimetrischer Flugzeug-SAR-Daten für die hydrologische Einzugsgebietsmodellierung. Dabei sollen vor allem Signaturuntersuchungen verschiedener Oberflächenmaterialien und deren zustandsspezifische Abflusswirksamkeit sowie die hydrologischen Parameter Bodenfeuchte, Biomasse, und DGM untersucht werden. Im Einzugsgebiet der Trinkwassertalsperre Zeulenroda (Thüringen) sollen dabei mit Hilfe der flächenhaft aufgenommenen Geländemesswerte (Bodenfeuchtigkeit, Biomasse) und der parallel zur E-SAR-Befliegung der DLR durchgeführten Geländekartierung mögliche Differenzierungen zwischen Rückstreukoeffizienten einzelner hydrologischer Einheiten (HRUs, Hydrological Response Units) herausgearbeitet werden. Zur Bestimmung der Bodenfeuchtigkeit müssen Vegetations- und mikro- bzw. makroskalige Rauhigkeitseinflüsse auf das L-Band-Rückstreusignal durch radiometrische Korrekturen eliminiert werden. Die letztliche Umrechnung in volumetrische Bodenfeuchtewerte erfolgt mittels empirischer Modelle. Die aus den E-SAR Daten extrahierten hydrologischen Parameter (Landnutzung, Biomasse, Bodenfeuchte) dienen sowohl als Input für die Niederschlags-Abluß-Modellierung als auch für deren Validierung.
| Origin | Count |
|---|---|
| Bund | 282 |
| Land | 25 |
| Wissenschaft | 30 |
| Type | Count |
|---|---|
| Daten und Messstellen | 8 |
| Ereignis | 1 |
| Förderprogramm | 262 |
| Repositorium | 1 |
| Text | 6 |
| unbekannt | 40 |
| License | Count |
|---|---|
| geschlossen | 25 |
| offen | 272 |
| unbekannt | 21 |
| Language | Count |
|---|---|
| Deutsch | 251 |
| Englisch | 85 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 1 |
| Datei | 6 |
| Dokument | 2 |
| Keine | 221 |
| Webdienst | 9 |
| Webseite | 86 |
| Topic | Count |
|---|---|
| Boden | 217 |
| Lebewesen und Lebensräume | 198 |
| Luft | 230 |
| Mensch und Umwelt | 318 |
| Wasser | 149 |
| Weitere | 318 |