In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about 3 weeks. In addition, some of the lower-tropospheric components of these layers were analysed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America lead to much stronger signatures in the central European atmosphere than the multitude of fires in the USA. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions descending from remote high-latitude regions, obviously picking up the aerosol on their way across Canada. In one case, subsidence from the stratosphere over Siberia over as many as 15-20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe. © Author(s) 2015.
Die LUBW ist für die Überwachung der Luftqualität in Baden-Württemberg zuständig, mit dem Ziel Art und Wirkung von Luftverunreinigungen auf den Menschen und die Umwelt zu erkennen, zu erfassen und die Ursachen so weit wie möglich zu beseitigen oder zumindest zu begrenzen. Als Luftverunreinigungen werden gemäß dem Bundes-Immissionsschutzgesetz (BImSchG) alle Veränderungen der natürlichen Zusammensetzung der Luft bezeichnet, beispielsweise durch Rauch, Ruß, Staub, Gase, Aerosole, Dämpfe und Geruchsstoffe. Im Zusammenhang mit unserer Umwelt ist die Emission die von einer Quelle ( Emittent ) ausgehende Freisetzung von festen, flüssigen oder gasförmigen Stoffen in die Atmosphäre. Die Emissionen können sowohl natürlichen Ursprungs als auch durch die Zivilisation bedingt (anthropogen) sein. Durch natürliche Ereignisse wie Waldbrände, Vulkanausbrüche (Emission von z. B. Ruß, Schwefeldioxid) und Sandstürme gelangen Schadstoffe in die Atmosphäre. Pflanzen emittieren Pollen sowie organische Gase, Sümpfe dagegen Methan. Anthropogen bedingte Emissionen stammen vor allem aus Verkehr, Industrie und Landwirtschaft. Beispiele hierfür sind die Schadstoffemissionen der Kraftfahrzeuge, die von einer Anlage ausgehenden Luftverunreinigungen oder Geräusche, der Straßenverkehrslärm und die Funkwellen von Sendemasten. Durch das Bundes-Immissionsschutzgesetz werden die Emissionen im Rahmen von Genehmigungen und Anordnungen begrenzt, mit dem Ziel Menschen, Tiere, Pflanzen, Böden, Gewässer sowie Sachgüter vor schädlichen Umwelteinwirkungen zu schützen. Die Immission ist die Einwirkung der an die Umwelt abgegebenen Stoffe. Das Erfassen und Bewerten der Immission ist wesentliche Aufgabe der Luftqualitätsüberwachung. Im Bundes-Immissionsschutzgesetz werden u. a. die allgemeinen Grundlagen und Regelungen zum Schutz von Mensch und Umwelt vor Luftverunreinigungen genannt. Die Transmission ist der Transport bzw. die Ausbreitung sowie mögliche Umwandlung der Stoffe in der Atmosphäre. Bei der Transmission unterliegen die Stoffe den witterungsbedingten atmosphärischen Verhältnissen. Die Deposition ist die Ablagerung von aus der Atmosphäre entfernten Stoffen auf belebten und unbelebten Oberflächen. Unterschieden wird zwischen nasser, trockener und feuchter Deposition. Mit der nassen Deposition werden gelöste und ungelöste Schadstoffe durch die Niederschläge (z. B. Regen, Schnee, Graupel) ausgewaschen. Diese Auswaschung als Selbstreinigung der Atmosphäre kann innerhalb von Wolken (Rainout) oder unterhalb der Wolkenbasis (Washout) erfolgen. Die Effektivität dieses Vorgangs, bestimmt durch den Rainout- bzw. Washout-Koeffizienten, hängt ab von den Die Wolken können die gebundenen Luftverunreinigungen aus verschiedenen Emissionsquellen zu entfernteren Gebieten transportieren. Dabei verändert sich das Verhältnis von trockener zu nasser Deposition von 10:1 in Emittentennähe auf 1:1 in emittentenferne Gebiete. Das heißt, während in der Nähe von Emissionsquellen die trockene Deposition den Hauptanteil der Gesamtdeposition bildet, nimmt der Anteil der nassen Deposition an der Gesamtdeposition mit der Entfernung zur Emissionsquelle zu und trägt dazu bei, dass Luftverunreinigungen auch zu empfindlichen Ökosystemen gelangen können. Die Sedimentation von Staubpartikeln (> 10 µm) durch Schwerkraft bzw. die Adsorption oder die Diffusion von Gasen, Feinstäuben und Aerosolen auf Oberflächen bedingen die trockene Deposition. Diese ist von der chemischen Zusammensetzung der bodennahen Luftschicht abhängig.
Das Projekt "Washout und Rainout von Spurenstoffen" wird vom Umweltbundesamt gefördert und von Universität Frankfurt, Institut für Meteorologie und Geophysik durchgeführt.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von lifespin GmbH durchgeführt. Deutsches Weidelgras als das wichtigste Futtergras in Deutschland wird besonders von den Auswirkungen des Klimawandels betroffen sein, da es allgemein keine ausgeprägte Trockentoleranz besitzt und Konkurrenzfähigkeit und Ertragskraft besonders in von Sommertrockenheit betroffenen Gebieten leiden wird. In Vorstudien konnte in Deutschem Weidelgras Variation für das Merkmal Trockentoleranz' gefunden werden, die für die Züchtung genutzt werden kann. Projektziel ist es, mit innovativen Methoden, die züchterische Bearbeitung des Merkmalskomplexes 'Trockentoleranz' bei Deutschem Weidelgras mit möglichst effizienten Methoden zu erreichen. Die Ergebnisse dieser Studie werden somit zukünftig eine schnellere und effizientere Züchtung neuer Weidelgrassorten ermöglichen, die damit besser an die Auswirkungen des allgemeinen Klimawandels angepasst sind. Als Vorarbeit wurden spaltende Kreuzungspopulationen erstellt, die zu Projektbeginn für die vorgesehenen Arbeiten zur Verfügung stehen. Dieses Material stellt den Nukleus dieses Vorhabens dar und wird im Rahmen dieses Projektes umfangreichen phänotypischen, physiologischen und molekulargenetischen Untersuchungen unterzogen. In Kombination von phänotypischer Beobachtung unter natürlichen (Feldversuch) und kontrollierten (Rain-out Shelter) Trockenstressbedingungen mit molekulargenetischen Untersuchungen der Vererbungsstruktur des komplex vererbten Merkmals, entsteht ein umfassendes Bild der Trockenstressantwort eines mehrjährigen Futtergrases. Auf dieser Basis können Genomregionen identifiziert werden, die an der Vererbung von Trockentoleranz beteiligt sind. Diese können in künftigen Züchtungsvorhaben markergestützt selektiert und kombiniert werden. Durch die Erfassung des Pflanzenmetaboloms werden Stoffwechselwege der Trockenstressantwort charakterisiert und eine Vielzahl neuer Biomarker identifiziert, so dass anhand der Pflanzeninhaltsstoffzusammensetzung auf die Trockenstressreaktion der Pflanze geschlossen werden kann.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von numares AG durchgeführt. Deutsches Weidelgras als das wichtigste Futtergras in Deutschland wird besonders von den Auswirkungen des Klimawandels betroffen sein, da es allgemein keine ausgeprägte Trockentoleranz besitzt und Konkurrenzfähigkeit und Ertragskraft besonders in von Sommertrockenheit betroffenen Gebieten leiden wird. In Vorstudien konnte in Deutschem Weidelgras Variation für das Merkmal 'Trockentoleranz' gefunden werden, die für die Züchtung genutzt werden kann. Projektziel ist es, mit innovativen Methoden, die züchterische Bearbeitung des Merkmalskomplexes 'Trockentoleranz' bei Deutschem Weidelgras mit möglichst effizienten Methoden zu erreichen. Die Ergebnisse dieser Studie werden somit zukünftig eine schnellere und effizientere Züchtung neuer Weidelgrassorten ermöglichen, die damit besser an die Auswirkungen des allgemeinen Klimawandels angepasst sind. Als Vorarbeit wurden spaltende Kreuzungspopulationen erstellt, die zu Projektbeginn für die vorgesehenen Arbeiten zur Verfügung stehen. Dieses Material stellt den Nukleus dieses Vorhabens dar und wird im Rahmen dieses Projektes umfangreichen phänotypischen, physiologischen und molekulargenetischen Untersuchungen unterzogen. In Kombination von phänotypischer Beobachtung unter natürlichen (Feldversuch) und kontrollierten (Rain-out Shelter) Trockentressbedingungen mit molekulargenetischen Untersuchungen der Vererbungsstruktur des komplex vererbten Merkmals, entsteht ein umfassendes Bild der Trockenstressantwort eines mehrjährigen Futtergrases. Auf dieser Basis können Genomregionen identifiziert werden, die an der Vererbung von Trockentoleranz beteiligt sind. Diese können in künftigen Züchtungsvorhaben markergestützt selektiert und kombiniert werden. Durch die Erfassung des Pflanzenmetaboloms werden Stoffwechselwege der Trockenstressantwort charakterisiert und eine Vielzahl neuer Biomarker identifiziert, so dass anhand der Pflanzeninhaltsstoffzusammensetzung auf die Trockenstressreaktion der Pflanze geschlossen werden kann.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Bayerische Landesanstalt für Landwirtschaft, Pflanzenbau - Institut für Pflanzenbau und Pflanzenzüchtung durchgeführt. Ziel des Projektes ist es, einen Beitrag zur Aufklärung der Vererbungsstruktur des komplexen Merkmals temporäre Trockentoleranz bei Deutschem Weidelgras (wie sie z.B. in Bayern heute schon während der Vorsommertrockenheit in Franken auftritt) zu leisten. Dabei bleibt auch künftig für Standorte mit für Deutschen Weidelgras grundsätzlich zu geringer Wasserversorgung (permanenten Trockenstress) weiterhin der Wechsel zu anderen Gräserarten - mit im Regelfall geringerem Futterwert - notwendig. Mit innovativen, molekular basierten Züchtungsmethoden soll die Züchtung von Deutschen Weidelgrassorten unterstützt werden, die unter den sich ändernden Umwelt- und Klimabedingungen zum einen eine gute Anpassungsfähigkeit im Hinblick auf Trockenheit zeigen bzw. durch eine erhöhte Wassernutzungseffizienz pro gegebener Einheit Wasser mehr Biomasse bilden können als die aktuellen Sorten. Auf diese Weise kann es gelingen, Erträge und Qualitäten in der Produktion von Grundfutter und damit einer der wichtigsten heimischen Eiweißquellen auch in Zukunft zu sichern. Mit Hilfe innovativer, moderner Methoden der Pflanzenzüchtung, wie der Aufdeckung von Quantitative Trait Loci (QTL) oder den Methoden der genomischen Selektion und des Metabolitenprofilings, können die gesteckten Zuchtziele effizienter erreicht werden, als durch klassische Auslesezüchtung. Zielsetzung: Evaluierung von für das Merkmal 'Trockentoleranz' spaltenden Kreuzungspopulationen unter kontrollierten (Rain-out Shelter, Gewächshaus) und natürlichen Trockenstressbedingungen mit verschiedenen vorgeprüften phänologischen und physiologischen Selektionsmerkmalen. - Genotypisierung der spaltenden Populationen mit einem anhand der Kreuzungseltern vorselektiertem Sortiment an DNA-Markern. - QTL-Analyse zur Aufklärung der Vererbungsstruktur des Merkmals 'Trockentoleranz' mit dem Ziel einer effizienteren Selektion auf dieses Merkmal. - Erstellung von ausgewählten tetraploiden Populationen aus colchizinierten Eltern-Klonen (Ausgangsmaterial der spaltenden Kreuzungspopulationen), die in Zukunft ermöglichen sollen, die Übertragbarkeit von Ergebnissen zur Trockentoleranz aus genetisch leichter zu untersuchenden diploiden Individuen auf die bei der Neuzüchtung von Sorten häufig verwendeten Tetraploiden abzuschätzen und genetische Effekte von allgemeinen Ploidieeffekten trennen zu können. - Etablierung einer NMR-Plattform als neues Werkzeug zur Hochdurchsatzphänotypisierung (Inhaltsstoffprofil) und Selektion auf Basis von Stoffwechselprofilen (Metabolomics).
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Bayerische Landesanstalt für Landwirtschaft, Pflanzenbau - Institut für Pflanzenbau und Pflanzenzüchtung durchgeführt. Mit der globalen Erwärmung und dem prognostizierten Klimawandel werden in Mitteleuropa zunehmend Perioden anhaltender Dürre erwartet. Bei Futter- und Rasengräsern ist die Bereitstellung von Sorten mit erhöhter Trockenheitsresistenz von besonderer Bedeutung, da die meisten Arten mehrjährig sind und damit die Stabilität gegenüber Jahreseffekten eine zusätzliche Relevanz besitzt. Es sollen anhand der in Deutschland wirtschaftlich bedeutendsten Gräserart Lolium perenne Grundlagen für eine effiziente Züchtung trockentoleranter Gräsersorten erarbeitet werden. Beabsichtigt ist eine umfassende Phänotypisierung eines breiten Spektrums genetischer Ressourcen von Lolium perenne. 200 Genotypen sollen in Feldversuchen an fünf repräsentativen Standorten mit zumindest periodisch auftretendem Wassermangel über drei Jahre hinweg mittels Sichtbonituren und spektrometrischen Messungen auf Verhalten und Leistung unter Trockenstress geprüft werden. Mit 50 ausgewählten divergierenden Genotypen werden aufwändigere Prüfungen unter kontrollierten Bedingungen durchgeführt. Neben Untersuchungen in Rain-out-Sheltern sollen Keimungsversuche unter Trockenstress, Bestimmungen des Wassersättigungs- und Resaturationsdefizit von isolierten Blättern sowie Versuche in PEG-Hydroponik-Systemen durchgeführt werden. Es ist zu prüfen, ob merkmalsrelevante Teilaspekte der Trockentoleranz auch unter solchen Bedingungen erfasst und gegebenenfalls als frühzeitig anzuwendende Selektionskriterien genutzt werden können. Im Ergebnis sollen (1) möglichst hoch differenzierende Phänotypprofile erstellt, (2) Pflanzenmaterial aller Genotypen für weiterführende quantitativ-genetische Untersuchungen sowie für die später durchzuführende Entwicklung molekularer und physiologischer Marker konserviert sowie (3) der Züchtungspraxis einfach zu handhabende Screeningverfahren und charakterisiertes 'pre-breeding'-Material zur Verfügung gestellt werden.
Das Projekt "Effect of drought on C cycling in the plant-soil system - which roles play lignin and lipids?" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. Häufigere und intensivere Trockenphasen werde für die Zukunft für Mitteleuropa prognostiziert. Zum gegenwärtigen Zeitpunkt ist es jedoch ungewiss, wie verschiedene Pflanzen sich daran anpassen werden. Es wird postuliert, dass die Pflanzen mehr in protektive Strategien investieren, wobei dies bislang vielfach hypothetisch ist. In dem Projekt wird der Einflusses von Trockenstress auf die Synthese und Persistenz von Wachsbestandteilen und Lignin in Pflanzen untersucht. Das übergeordnete Ziel des Projektes ist die Verbesserung des Verständnisses, wie verschiedene Pflanzen der temperierten Klimazone auf den Klimawandel und hier insbesondere ausgeprägtere Trockenphasen reagieren. Im Detail wird dabei untersucht (i) welche Pflanzengemeinschaft (Grasland im Vergleich zu Heidekräutern) auch bei verstärktem Trockenstress noch aktiv Kohlenstoff (C) aus der Atmosphäre aufnehmen kann, (ii) wie sich die C-Aufnahme in einzelnen Pflanzen der genannten Gemeinschaften im Laufe steigernder Trockenheit verändert, (iii) in welche Substanzklassen (Wachskomponenten oder Lignin) die Pflanzen bei intensiverer Trockenheit mehr investieren, und (iv) wie sich der C-Eintrag und -Umsatz im Boden bei intensiverer Trockenheit verändert. Die Erkenntnisse des Forschungsprojekts sind einerseits wichtig, um die Reaktion einheimischer Pflanzen auf den Klimawandel besser verstehen zu können und andererseits, um den Effekt von Trockenheit auf den C-Kreislauf zu erfassen, d.h. ob es durch Trockenheiten zu einer verstärkten Freisetzung von C aus dem Boden kommt.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Deutsches Weidelgras als das wichtigste Futtergras in Deutschland wird besonders von den Auswirkungen des Klimawandels betroffen sein, da es allgemein keine ausgeprägte Trockentoleranz besitzt und Konkurrenzfähigkeit und Ertragskraft besonders in von Sommertrockenheit betroffenen Gebieten leiden wird. In Vorstudien konnte in Deutschem Weidelgras Variation für das Merkmal 'Trockentoleranz' gefunden werden, die für die Züchtung genutzt werden kann. Projektziel ist es, mit innovativen Methoden, die züchterische Bearbeitung des Merkmalskomplexes 'Trockentoleranz' bei Deutschem Weidelgras mit möglichst effizienten Methoden zu erreichen. Die Ergebnisse dieser Studie werden somit zukünftig eine schnellere und effizientere Züchtung neuer Weidelgrassorten ermöglichen, die damit besser an die Auswirkungen des allgemeinen Klimawandels angepasst sind. Als Vorarbeit wurden spaltende Kreuzungspopulationen erstellt, die zu Projektbeginn für die vorgesehenen Arbeiten zur Verfügung stehen. Dieses Material stellt den Nukleus dieses Vorhabens dar und wird im Rahmen dieses Projektes umfangreichen phänotypischen, physiologischen und molekulargenetischen Untersuchungen unterzogen. In Kombination von phänotypischer Beobachtung unter natürlichen (Feldversuch) und kontrollierten (Rain-out Shelter) Trockentressbedingungen mit molekulargenetischen Untersuchungen der Vererbungsstruktur des komplex vererbten Merkmals, entsteht ein umfassendes Bild der Trockenstressantwort eines mehrjährigen Futtergrases. Auf dieser Basis können Genomregionen identifiziert werden, die an der Vererbung von Trockentoleranz beteiligt sind. Diese können in künftigen Züchtungsvorhaben markergestützt selektiert und kombiniert werden. Durch die Erfassung des Pflanzenmetaboloms werden Stoffwechselwege der Trockenstressantwort charakterisiert und eine Vielzahl neuer Biomarker identifiziert, so dass anhand der Pflanzeninhaltsstoffzusammensetzung auf die Trockenstressreaktion der Pflanze geschlossen werden kann.
Das Projekt "BioEnergie 2021- OPTIMAIS: Verbesserung der Biomasse-Syntheseleistung durch züchterische Optimierung der Wassernutzungseffizienz von Energiemais" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Pflanzenzüchtung durchgeführt. Ziel dieses Vorhabens ist es, in einem interdisziplinären Ansatz quantitativ genetisch, physiologisch, molekularbiologisch und zuchtmethodisch arbeitender Gruppen aus Wissenschaft und Wirtschaft, Genomregionen - und letztlich Gene - für Trockentoleranz beim Energiemais zu identifizieren. Die Ausprägung des Merkmals Trockentoleranz wird auf Phänotypisierungsplattformen unterschiedlicher Komplexität (Feldversuch, rain-out shelter, Klimakammer) erfasst. Es sollen Erkenntnisse zur phänotypischen Ausprägung auf physiologischer, morphologischer und genetischer Ebene gewonnen und im Sinne des Breeding by Design sofort in die Produktentwicklung von ertragreichen Energiemaissorten mit verbesserter Trockentoleranz umgesetzt werden. Partner TUM: Durch Prüfung von Linien aus einer Introgressionsbibliothek und von DH-Linien unter kontrollierten Bedingungen im rain-out shelter sollen Genomregionen für Trockentoleranz identifiziert werden. Genotypische und phänotypische Daten der verschiedenen Phänotypisierungsplattformen werden gemeinsam verrechnet, QTL lokalisiert und die Größe der einzelnen Effekte bestimmt. Für Genomregionen mit großem phänotypischem Effekt erfolgt eine Feinkartierung und der Aufbau weiterer biologischer Ressourcen. Genomsegmente für das Merkmal 'Trockenmasseertrag unter Trockenbedingungen' sollen lokalisiert und die genetische Architektur der Trockentoleranz aufgeklärt werden. Die Informationen werden unmittelbar für die Züchtung besserer Energiemaislinien nutzbar gemacht. Später können durch die molekulare Klonierung der Gene (QTL) Rechte an geistigem Eigentum erworben werden. Im Projekt gewonnene wissenschaftliche Erkenntnisse sollen in entsprechenden Zeitschriften publiziert und der wissenschaftlichen Gemeinschaft zugänglich gemacht werden.
Origin | Count |
---|---|
Bund | 14 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 13 |
Text | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 13 |
Language | Count |
---|---|
Deutsch | 14 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 7 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 14 |
Luft | 13 |
Mensch & Umwelt | 15 |
Wasser | 15 |
Weitere | 15 |