Coccolithophoriden sind eine Gruppe von ca. 200-300 marinen Phytoplanktonarten, die in allen Weltmeeren vorkommt. Sie besitzen die besondere Fähigkeit eine Kalkschale (Coccosphäre) zu bauen, die sie aus vielen kleinen Kalkplättchen (Coccolithen) zusammensetzen. Aufgrund ihrer Fähigkeit zu kalzifizieren sind sie ein wichtiger Bestandteil im Klimasystem, denn die Produktion von Kalk nahe der Meeresoberfläche führt zu einem vertikalen Gradienten der Seewasseralkalinität, beschleunigt den Kohlenstoffexport in die Tiefsee und erhöht die Rückstrahlung von einfallender Sonnenenergie von der Erdoberfläche ins Weltall. Trotz intensiver Forschung an der Physiologie der Kalzifizierung und dessen biogeochemischer Relevanz konnten wir eine der entscheidenden Fragen immer noch nicht beantworten: Wozu bauen Coccolithophoriden eine Kalkschale? Die Beantwortung dieser Frage ist von außerordentlicher Bedeutung, denn solange wir nicht wissen wozu die Kalkschale dient können wir auch nicht vorraussagen in welchem Maße sich die durch die Ozeanversauerung zu erwartende Abnhame in der Kalzifizierung negativ auf die Fitness dieser Lebewesen in ihrem natürlichen Lebensraum auswirkt. In dem hier vorgestellten Projekt möchten wir die Frage nach der Bedeutung der Kalzifizierung erforschen, indem wir untersuchen ob die Coccosphäre einen Schutz gegen planktonische Räuber, Bakterien und Viren darstellt. Dazu haben wir eigens einen experimentellen Ansatz entwickelt wobei kalzifizierte und dekalzifizierte Coccolithophoridentzellen zusammen mit deren Fressfeinden und Pathogenen kultiviert werden. Dieser Ansatz erlaubt es uns folgende Fragestellungen zu untersuchen: 1) Sind kalzifizierte Zellen besser in der Lage sich gegen Fraß und Infektion zu schützen als Zellen ohne Coccosphäre? 2) Bevorzugen Fressfeinde und Pathogene solche Zellen, bei denen die Coccosphäre entfernt wurde, wenn ihnen beides angeboten wird? 3) Sind Wachstum und Reproduktion von Fressfeinden und Pathogenen verlangsamt, wenn sie kalzifizierte Zellen fressen oder infizieren?
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.
Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.
Die Energietransfers der drei dynamischen Regime - kleinskalige Turbulenz, interne Schwerewellen und geostrophisch balancierte Strömung - sind fundamental für den Energiezyklus in der Atmosphäre und dem Ozean. Nichtsdestotrotz sind sie aber nicht gut verstanden und quantifiziert, und ihre Repräsentation in modernen Erdsystemmodellen ist unbefriedigend. Weil durch die Interaktion der dynamischen Regime die kleinsten Skalen ultimativ mit den größten Skalen durch eine Vielzahl von komplexen Prozessen verbunden sind, ist das Verständnis dieser Interaktionen wichtig um Ozean- und Atmosphärenmodelle zu konstruieren und um das Klima vorherzusagen. Die gegenwärtige Unkenntnis dieser Prozesse wird durch energetisch inkonsistente Modelle mit relativ großen Fehlern, aber auch durch Inkonsistenzen numerischer und mathematischer Natur, reflektiert. Wir glauben, dass es nun an der Zeit ist momentane Anstrengungen zu kombinieren, diese Defizite zu überwinden, neue Aktivitäten zu fördern die dynamischen Interaktionen zu verstehen und die Konsistenz von Ozean- und Atmosphärenmodellen zu verbessern. Die Arbeit des SFB/TRR soll die Modellfehler reduzieren, die Modellgüte verbessern, und ultimativ die Klimamodelle und Klimavorhersagen verbessern. Die wesentlichen Ziele dieses SFB/TRR sind - i. das notwendige Verständnis der Energietransfers zwischen den verschiedenen dynamischen Regimen in Atmosphäre und Ozean zu entwickeln, - ii. mit diesem Verständnis neue und konsistente Parametrisierungen zu entwickeln und in Modellen zu implementieren und zu testen, und - iii. numerischen Methoden mit konsistenter Energetik zu entwickeln. Es ist unsere Vision dadurch eine energetisch konsistente Beschreibung der Energiekonversionen im Klimasystem zu etablieren sowie physikalisch, mathematisch und numerisch konsistente Ozean- und Atmosphärenmodelle zu entwickeln.
In einem Videofilm mit ergaenzenden Begleittexten werden praxisbezogen erfolgreiche Konzepte, Massnahmen, Analysen und Reflexionen ueber Umweltbewaeltigungen; persoenliche Erfolge in Arbeitsbereichen, die Identitaet schaffen; Fachliteratur und Personen vorgestellt. In Form einer Bestandsaufnahme wird ein in Krankenhaeusern stattfindender Umweltschutz vorgestellt, der verbreitungswuerdig ist. Was die Dramaturgie und Gestaltung des Medienprojektes betrifft, wird den Sehgewohnheiten des Fernsehens Rechnung getragen. Obwohl von den Krankenhausgesellschaften in den Laendern initiierte Umweltarbeitskreise erfolgreich operieren, fehlt im Krankenhauswesen ein zentraler Ansprechpartner, mit dem man sich auf ein derartiges Projekt haette verstaendigen koennte. Das erschwert den Zugang zu praxisnahen Informationen ungemein, macht eine Projektrecherche zu einer zeitraubenden Angelegenheit. Deshalb sind Partnerschaften mit Interessengruppen sinnvoll, die eine Kooperation zwischen Medien- und Fachkompetenz ermoeglichen. Und was nicht unterschaetzt werden darf, dies macht den oekologischen Wandel zur eigenen Sache. Damit wird die Plattform fuer einen notwendigen Informationstransfer geschaffen, der auf die Praxis abgestimmt, Orientierung und Vergleichsmoeglichkeiten anbietet. Das Ergebnis der Projektrecherche insgesamt gesehen ist: in Kliniken hat sich, trotz Deckelung durch das Krankenhausstrukturgesetz, bereits auf hohem Niveau teilweise ein oekologischer Wandel vollzogen, der verbreitungswuerdig ist. Zum Beispiel ist dies beim Energieverbrauch der Fall. Auch wenn dieser nur etwa 4,5 bis 6 Prozent der Gesamtbetriebskosten ausmacht, so koennten in Deutschen Krankenhaeusern immerhin noch etwa zwei Milliarden D-Mark eingespart werden. Greifbare Zahlen, die fuer das Pilotprojektes Die Energiesparer sprechen. Dafuer wurde mit der Fachvereinigung Krankenhaustechnik eine Kooperation vereinbart, deren Mitglieder bereits eine Energiekultur praktizieren, die geforderte umweltpolitische Ziele laengst einloesen oder diese teilweise weit uebertreffen. Das Projekt in Progress befindet sich noch in der Herstellungsphase. Weitere Mediendienstleistungen sind vorgesehen.
Zielsetzung: In der fleischverarbeitenden Industrie ergeben sich für die Beschäftigten an vielen Arbeitsplätzen hohe Lärmbelastungen, z. B. im Schlachtbetrieb, an Kuttern, Clippern und Peelern. Selbst in Betrieben mit modernsten Maschinen nach dem Stand der Technik entstehen gehörgefährdende Lärmbelastungen. Da die Arbeitsräume in der Regel allseitig stark reflektierende Raumbegrenzungsflächen aufweisen, sollten sich hier durch raumakustisch wirksame Maßnahmen deutliche Pegelminderungen erreichen lassen, z. B. durch eine schallabsorbierende Belegung der Deckenfläche und ggf. von Wandflächen. Aus hygienischen Gründen kommen allerdings keine offenporigen Schallabsorber aus künstlichen Mineralfasern oder Schaumstoff in Betracht. Alle Materialien müssen sich mit Laugen schäumend reinigen und mit dem Hochdruckreiniger abspritzen lassen. Seit wenigen Jahren gibt es sogenannte mikroperforierte Schallabsorber, die sich z. B. aus Edelstahl, Acrylglas oder PVC herstellen lassen und eine entsprechende Reinigung erlauben. Die akustische Wirksamkeit dieser Materialien beruht darauf, dass der Luftschall bei Durchgang durch das perforierte Material mit vielen winzig kleinen Löchern von z. B. 0,1 bis 1 mm Durchmesser eine Dämpfung erfährt (viskose Reibung in den Löchern) und die Schallenergie in Wärme umgewandelt wird. Die mit diesem Material erreichbaren Lärmminderungserfolge sollen für den Bereich der Fleischwirtschaft untersucht werden. Neben den hier zunächst zu betrachtenden akustischen Aspekten sind dabei auch Fragen der Hygiene aufzugreifen, was in einem separaten Projekt des BGIA - Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung durchgeführt wird. Aktivitäten/Methoden: Da die Wirksamkeit von mikroperforierten Schallabsorbern von den geometrischen Parametern, wie Durchmesser und Anzahl der Bohrungen und dem Abstand zur Decke bzw. Wand abhängt, sollten sie gezielt für den Anwendungsfall ausgewählt werden. Deshalb ist im ersten Schritt der Untersuchung die akustische Situation in den betrachteten fleischverarbeitenden Betrieben zu analysieren. Dabei können größtenteils vorhandene Messdaten der Fleischerei-Berufsgenossenschaft verwendet werden. Die Materialhersteller sollten über die entsprechenden akustischen Eigenschaften der Materialien verfügen, um eine gezielte Auswahl zu ermöglichen. Damit lassen sich dann die erreichbaren Lärmminderungserfolge für einzelne Fleischereibetriebe berechnen. Sollten sich nach diesen Prognoserechnungen ausreichende Lärmminderungserfolge von mindestens 2 dB(A) ergeben, soll die Eignung der mikroperforierten Schallabsorber in einem Folgeprojekt in der betrieblichen Praxis untersucht werden. Dabei sind dann neben der akustischen Wirksamkeit auch Fragen der Hygiene zu untersuchen.
Wasserbauliche Gutachten der BAW unterliegen im Zusammenhang mit großen Ausbauvorhaben einer zum Teil bis in kleinste Detail gehenden kritischen Betrachtung und Erwiderung durch Einwender in den Planfeststellungsverfahren. Die Einwender beauftragen zudem immer häufiger wissenschaftliche Einrichtungen und Sachverständige im In- und Ausland, um die Gutachten der BAW zu erschüttern. Bemerkenswert ist, dass die Planfeststellungsverfahren einschließlich der Verwaltungsgerichtsverfahren auch aus solchen Gründen heute mehr als eine Dekade in Anspruch nehmen können. Folglich gelangen Arbeitsgrundlagen und -ergebnisse, die viele Jahre zurückliegen, wiederholt auf den Prüfstand. Darüber hinaus werden auch Gutachten für bereits in fernerer Vergangenheit abgeschlossene Ausbauprojekte erneut in laufende Planfeststellungsverfahren einbezogen, um unter anderem so zu versuchen, der BAW falsche Prognosen für historische Zeitspannen nachzuweisen. Diese Entwicklung mag man aus Sicht der Ökonomie und der Politik beklagen, sie bringt für die BAW jedoch auch die produktive Herausforderung mit sich, ihre Qualitätsstandards zu reflektieren und weiter zu schärfen. Arbeitsgrundlagen und Arbeitsprozesse zur Erstellung von Gutachten müssen besonderen Qualitätskriterien genügen: 1. Steigende Anforderungen an die Qualität der Datengrundlagen 2. Stetige Weiterentwicklung der Methoden und Verfahren 3. Interne Prüfung der Ergebnisse von Simulationsverfahren 4. Langfristige Verfügbarkeit der Software 5. Gesicherte Methoden zur Beweissicherung Fazit: Im Sinne der Umweltgesetzgebung kommt es heute darauf an, die Umweltauswirkungen von wasserbaulichen Maßnahmen umfassend beurteilen zu können. Die BAW liefert hierfür mit ihren Methoden und Gutachten detaillierte Grundlagen und trägt damit zur Balance zwischen ökonomischer Nutzung und ökologischer Entwicklung bei.
Ressourcenverbrauch im produzierenden Gewerbe wird zukünftig noch stärker in den Fokus unserer Gesellschaft rücken. Um als Unternehmen eine Vorstellung über die eigene Ressourceneffizienz, also dem effizienten Einsatz von Ressourcen wie Rohstoffe und Energie, zu erhalten, ist es notwendig, den Umgang im Unternehmen zu überprüfen und zu reflektieren. Dazu kann der Ressourcencheck als ein Einstieg dienen. Nach der Erstellung eines Werkzeugs (Basismodul) zur Selbsteinstufung hinsichtlich der Ressourceneffizienz im eigenen Unternehmen, wurden bereits zwei Vertiefungsmodule für das metallverarbeitende Gewerbe und Unternehmen der Oberflächentechnik entwickelt. Ziele der Selbsteinstufung sind die Sensibilisierung für das Thema Ressourceneffizienz, das Aufzeigen von Handlungsmöglichkeiten und der Vergleich mit Beispielen aus der Praxis. Der Selbst-Check ist bewusst knapp gehalten, um ein niederschwelliges Angebot insbesondere für Führungskräfte zu schaffen. Inhaltlich basieren die Fragen auf Erfahrungen aus der Praxis.
Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.
Origin | Count |
---|---|
Bund | 525 |
Land | 4 |
Wissenschaft | 10 |
Type | Count |
---|---|
Förderprogramm | 524 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 2 |
offen | 525 |
Language | Count |
---|---|
Deutsch | 468 |
Englisch | 112 |
Resource type | Count |
---|---|
Keine | 340 |
Webseite | 187 |
Topic | Count |
---|---|
Boden | 295 |
Lebewesen & Lebensräume | 338 |
Luft | 306 |
Mensch & Umwelt | 527 |
Wasser | 235 |
Weitere | 524 |