<p>Das Trinkwasser größerer Trinkwasserversorger besitzt eine gute bis sehr gute Qualität. Bis zu 120.000 Messungen pro Parameter und Jahr im Berichtszeitraum von 2020 bis 2022 zeigen, dass nahezu alle mikrobiologischen und chemischen Qualitätsparameter mit Ausnahme weniger Pflanzenschutzmittel-Wirkstoffe zu mehr als 99 Prozent eingehalten wurden. Grenzwerte wurden nur vereinzelt überschritten.</p><p>Messdaten zur Trinkwasserqualität in Deutschland</p><p>Die Messdaten aus den Jahren 2020 bis 2022 zeigen: Das Trinkwasser hielt mit Ausnahme weniger <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>-Wirkstoffe zu mehr als 99 % alle Qualitätsanforderungen ein (siehe Tab. „Qualität des Trinkwassers aus größeren Wasserwerken Deutschlands“). Diese Daten haben das Bundesgesundheitsministerium und das Umweltbundesamt auch im siebten <a href="https://www.umweltbundesamt.de/publikationen/bericht-des-bundesministeriums-fuer-gesundheit-des-5">Bericht des Bundesministeriums für Gesundheit und des Umweltbundesamtes an die Verbraucherinnen und Verbraucher über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasser) in Deutschland (2020 – 2022)</a> veröffentlicht. <br><br></p><p>Mehr als 2.500 große Wasserversorgungsgebiete</p><p>Die Beschaffenheit des Trinkwassers wird repräsentativ nach einer von der Europäischen Union vorgegebenen Auswahl von Parametern beurteilt. Berücksichtigt wurden dafür im Berichtszeitraum alle Wasserversorgungsgebiete, in denen mehr als 5.000 Menschen mit Trinkwasser beliefert oder im Durchschnitt täglich mehr als 1.000 Kubikmeter Trinkwasser verteilt wurden. Im Jahr 2022 waren das 2.507 Wasserversorgungsgebiete. In ihnen wurden 74,1 Millionen Menschen – das sind etwa 89 % der Bevölkerung – mit 4.443 Millionen Kubikmeter Trinkwasser versorgt. Das Rohwasser für die Trinkwasseraufbereitung kommt zu 67,6 % aus Grundwasser, zu 15,9 % aus Oberflächenwasser und zu 16,5 % aus Quellen wie dem Uferfiltrat oder künstlich angereichertem Grundwasser (siehe Karte „Wasserversorgungsgebiete nach Bundesland“).</p><p>Berichte der Bundesregierung zur Trinkwasserqualität</p><p>Die Bundesregierung informiert alle drei Jahre die Europäische Kommission über die Trinkwasserqualität. Dieser Bericht berücksichtigt die Messdaten aus den Jahren 2020 bis 2022 unter anderem zu 14 ausgewählten Parametern:</p><p>Sporadisch zu viele Bakterien</p><p>Grenzwertüberschreitungen gab es bei dem Parameter „coliforme Bakterien“. Im Berichtsjahr 2022 wurden in 1,1 % der genommenen Proben coliforme Bakterien gefunden. Bei ihnen handelt es sich um Indikatorbakterien, deren Auftreten im Trinkwasser nicht immer als direkte Gesundheitsgefahr zu deuten ist. Sie zeigen oft eine allgemeine Verschlechterung der Wasserqualität und damit die Notwendigkeit an, weitere Untersuchungen als vorbeugende Maßnahme zum Schutz der Gesundheit der Bevölkerung einzuleiten. Es handelte sich oft um sporadische Überschreitungen, die bei weiterer Untersuchung nicht bestätigt wurden.</p><p>Kaum Nitrat, weniger Blei</p><p>Wie schon in den Vorjahren blieben beim Parameter Nitrat Grenzwertüberschreitungen im Trinkwasser die seltene Ausnahme. Allerdings erlaubt dies weder einen unmittelbaren Rückschluss auf den Nitratgehalt der Rohwässer, noch stellen die Befunde einen Widerspruch dar zu dem beobachteten Anstieg der Nitratkonzentration in Grundwässern durch Einträge aus Landwirtschaft und Biomasseproduktion. Die bisherigen Erfolge bei der Einhaltung des Nitratgrenzwertes im Trinkwasser liegen nicht zuletzt in wirksamen Maßnahmen zur Nitratminderung in den berichtspflichtigen Wasserversorgungsunternehmen begründet. <br><br>Grenzwertüberschreitungen beim Parameter Blei wurden hauptsächlich am Zapfhahn der Endverbraucherinnen und -verbraucher nachgewiesen. Sie sind ein Indiz für noch vorhandene Bleileitungen in der Trinkwasser-Installation oder für Armaturen, die nicht die allgemein anerkannten Regeln der Technik erfüllen. Ein Nichtbeachten allgemein anerkannter Regeln der Technik ist meist auch Ursache für die Nichteinhaltung der Parameterwerte für Nickel und Cadmium.</p><p>Regelungen zur Trinkwasserüberwachung</p><p>Die Daten zur Trinkwasserqualität in Deutschland wurden nach der <a href="https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl118s0099.pdf#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl118s0099.pdf%27%5D__1523453278246">Trinkwasserverordnung</a> (TrinkwV, 2001) erhoben. Diese Verordnung setzt noch die Vorgaben der <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1523452637929&uri=CELEX:31998L0083">Trinkwasserrichtlinie</a> der Europäischen Union aus dem Jahr 1998 um. Am 12. Januar 2021 trat die <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32020L2184">neue EG-Trinkwasserrichtlinie</a> in Kraft und wurde durch die neue <a href="https://www.recht.bund.de/eli/bund/bgbl_1/2023/159">TrinkwV (2023)</a> in nationales Recht umgesetzt. Demnach ändert sich unter anderem der Berichtszeitraum vom bis jetzt Dreijahreszyklus zu einer jährlichen Berichtsform. Die deutsche Verordnung enthält Vorgaben zur Aufbereitung des Trinkwassers und zu dessen Beschaffenheit. Eine Grundanforderung ist, dass Trinkwasser rein und genusstauglich sein muss. Es darf keine Krankheitserreger aufweisen und keine Stoffe in gesundheitsschädigenden Konzentrationen enthalten. Die Verordnung nennt weitere Pflichten der Versorgungsunternehmen und gibt Behörden vor, was und wie sie die Trinkwasserqualität überwachen müssen. Die Beschaffenheit des Trinkwassers wird repräsentativ nach einer von der Europäischen Union vorgegebenen Auswahl von Parametern beurteilt.</p>
Allgemeine Informationen: Der Datensatz umfasst Verkehrsdaten aller Standorte in Hamburg, an denen der Kraftfahrzeugverkehr (Kfz-Verkehr) mittels Infrarotdetektoren an 24h am Tag und allen Tagen des Jahres erfasst wird. Die Daten enthalten Verkehrsstärken in Echtzeit und werden an für den Straßenquerschnitt zusammengefassten Zählstellen in 15-Minuten, 60-Minuten, Tages- und Wochen-Intervallen zur Verfügung gestellt. Die Daten der Zählstellen werden außerdem in den entsprechenden Geoportalen der FHH, z.B. in Geo-Online und dem Verkehrsportal, visualisiert. Neben den Echtzeitdaten sind auch historische Daten in folgendem Umfang verfügbar: alle Daten für die letzten zwei Wochen in 15-Minuten-Intervallen, alle Daten für die letzten zwei Monate für die 60-Minutenintervalle, alle Daten für das aktuelle und das letzte Jahr in Tagesintervallen sowie alle Daten seit Beginn der Erfassung in Wochenintervallen. Informationen zur Technik: Die Infrarotdetektoren sind in der Regel an Lichtsignalanlagen, zu einem geringen Teil aber auch an anderen Masten, installiert. Die Detektoren erfassen und zählen den Verkehr über die Wärmeabstrahlung der einzelnen Verkehrsteilnehmenden. Da ausschließlich Infrarotbilder ausgewertet werden, ist der Datenschutz zu jeder Zeit gewährleistet. Hinweise zur Datenqualität: Die Daten werden in Echtzeit an die Urban Data Platform der FHH übertragen. So sind diese zeitnah für alle Nutzenden und Interessierten verfügbar. Durch die Echtzeitkomponente sind allerdings verschiedene Rahmenbedingungen zu beachten: Die Daten sind nicht umfassend qualitätsgesichert. Ungewöhnliche Abweichungen von den zu erwartenden Daten und Datenlücken werden zwar automatisch vom System erkannt, können aber nicht in Echtzeit korrigiert werden. Lücken, die z.B. durch einen Abriss der Datenübertragung auftreten, können im Nachhinein noch nachgeliefert werden. Unter Umständen und bei längeren Ausfällen können folglich noch nach ein paar Tagen Änderungen in den historischen Daten erfolgen. Die Daten erhalten deswegen täglich eine Aktualisierung für die folgenden Zeiträume: Vortag: 15-Min-Intervalle Tag vor sechs Tagen: 15-Min-Intervalle und Tages-Intervalle Tag vor 28 Tagen: Tages-Intervalle Die Wochenwerte erhalten wöchentlich eine Aktualisierung für die Werte der Vorwoche und der Woche vor vier Wochen. Es handelt sich bei den hier veröffentlichten Daten nicht um amtlich geprüfte Daten der FHH. Werden derartige Daten benötigt, kann z.B. der Datensatz "Verkehrsstärken Hamburg" herangezogen werden, der die „Durchschnittlichen (werk)täglichen Verkehre“ in der Entwicklung der letzten Jahre enthält. Wie bei jeder Verkehrszählung, egal ob automatisiert oder manuell, gibt es gewisse Toleranzen in der Messgenauigkeit. Anspruch an das hier verwendete System sind Genauigkeiten von +/- 5% bei der Erfassung der Kfz-Verkehrsstärken. Weitere Informationen zum Echtzeitdienst: Der Echtzeitdatendienst enthält die Standorte der Zählstellen für das Kfz-Aufkommen, das mit Infrarotdetektoren erfasst wird. Die Daten werden im JSON-Format über die SensorThings API (STA) bereitgestellt . Für jede Zählstelle in der SensorThings API (STA) wurde ein Objekt in der Entität "Thing" angelegt. Für jede zeitliche Auflösungsebene bei den Zählstellen bzw. jeder verkehrlichen Bezugsgröße steht ein Objekt in der Entität "Datastreams". Die Echtzeitdaten zur Anzahl Kfz je Zählstelle und Zeitintervall wird in der STA in der Entität "Observations" veröffentlicht. Es werden folgende räumlichen und zeitlichen Ebenen differenziert: -Zählstelle 15-Min, 1-Stunde, 1-Tag, 1-Woche: Anzahl Kfz Alle Zeitangaben sind in der koordinierten Weltzeit (UTC) angegeben. In der Entität Datastreams gibt es im JSON-Objekt unter dem "key" "properties" weitere "key-value-Paare". In Anlehnung an die Service- und Layerstruktur im GIS haben wir Service und Layer als zusätzliche "key-value-Paare" unter dem JSON-Objekt properties eingeführt. Hier ein Beispiel: { "properties":{ "serviceName": "HH_STA_AutomatisierteVerkehrsmengenerfassung", "layerName": "Anzahl_Kfz_Zaehlstelle_15-Min", "key":"value"} } Verfügbare Layer im layerName sind: * Anzahl_Kfz_Zaehlstelle_15-Min * Anzahl_Kfz_Zaehlstelle_1-Stunde * Anzahl_Kfz_Zaehlstelle_1-Tag * Anzahl_Kfz_Zaehlstelle_1-Woche Mit Hilfe dieser "key-value-Paare" können dann Filter für die REST-Anfrage definiert werden, bspw. https://iot.hamburg.de/v1.1/Datastreams?$filter=properties/serviceName eq 'HH_STA_AutomatisierteVerkehrsmengenerfassung' and properties/layerName eq 'Anzahl_Kfz_Zaehlstelle_15-Min' Die Echtzeitdaten kann man auch über einen MQTT-Broker erhalten. Die dafür notwendigen IDs können über eine REST-Anfrage bezogen werden und dann für das Abonnement auf einen Datastream verwendet werden: MQTT-Broker: iot.hamburg.de Topic: v1.1/Datastream({id})/Observations
Allgemeine Informationen: Der Datensatz umfasst Verkehrsdaten aller Standorte in Hamburg, an denen der Radverkehr mittels Infrarotdetektoren an 24h am Tag und allen Tagen des Jahres erfasst wird. Der Datensatz enthält sowohl die Verkehrsstärken einzelner Zählfelder als auch aus mehreren Zählfeldern aggregierte Zählstellen in Echtzeit. Der schematische Aufbau der Datenerfassung und Datenaggregation ist in einem separaten Dokument beschrieben, welches in den Verweisen zu finden ist. Die Daten der Zählfelder werden in 5-Minuten-Intervallen bereitgestellt. Die Daten der Zählstellen liegen aggregiert in 15- und 60-Minuten-Intervallen sowie in Tages- und Wochenwerten vor. Die Daten der Zählstellen werden außerdem in den entsprechenden Geoportalen der FHH, z.B. in Geo-Online und dem Verkehrsportal, visualisiert. Neben den Echtzeitdaten sind auch historische Daten in folgendem Umfang verfügbar: Zählfelder: alle Daten seit Beginn der Erfassung in 5-Minuten-Intervallen. Zählstellen: alle Daten für die letzten zwei Wochen in 15-Minuten-Intervallen, alle Daten für die letzten zwei Monate in Stundenintervallen, alle Daten für das aktuelle und das letzte Jahr in Tagesintervallen sowie alle Daten seit Beginn der Erfassung in Wochenintervallen. Informationen zur Technik: Die Infrarotdetektoren sind in der Regel an Beleuchtungsmasten, zum Teil aber auch an anderen Masten, installiert. Die Detektoren erfassen und zählen den Verkehr über die Wärmeabstrahlung der einzelnen Verkehrsteilnehmenden. Da ausschließlich Infrarotbilder ausgewertet werden, ist der Datenschutz zu jeder Zeit gewährleistet. Hinweise zur Datenqualität: Die Daten werden in Echtzeit an die Urban Data Platform der FHH übertragen. So sind diese zeitnah für alle Nutzenden und Interessierten verfügbar. Durch die Echtzeitkomponente sind allerdings verschiedene Rahmenbedingungen zu beachten: Die Daten sind nicht umfassend qualitätsgesichert. Ungewöhnliche Abweichungen von den zu erwartenden Daten und Datenlücken werden zwar automatisch vom System erkannt, können aber nicht in Echtzeit korrigiert werden. Lücken, die z.B. durch einen Abriss der Datenübertragung auftreten, können im Nachhinein noch nachgeliefert werden. Unter Umständen und bei längeren Ausfällen können folglich noch nach ein paar Tagen Änderungen in den historischen Daten erfolgen. Die Daten erhalten deswegen täglich eine Aktualisierung für die folgenden Zeiträume: Vortag: 5-Min-Intervalle, 15-Min-Intervalle und 60-Min-Intervalle Tag vor sechs Tagen: 5-Min-Intervalle, 15-Min-Intervalle, 60-Min-Intervalle und Tages-Intervalle Tag vor 28 Tagen: 5-Min-Intervalle, 60-Min-Intervalle, Tages-Intervalle Die Wochenwerte erhalten wöchentlich eine Aktualisierung für die Werte der Vorwoche und der Woche vor vier Wochen. Es handelt sich bei den hier veröffentlichten Daten nicht um amtlich geprüfte Daten der FHH. Wie bei jeder Verkehrszählung, egal ob automatisiert oder manuell, gibt es gewisse Toleranzen in der Messgenauigkeit. Anspruch an das hier verwendete System sind Genauigkeiten für die Zählfelder von +/- 10% bei der Erfassung des Radverkehrs auf Gehwegen, Radwegen und Radverkehrsstreifen sowie +/-20% bei der Erfassung des Radverkehrs im Mischverkehr mit Kraftfahrzeugen. Da Zählstellen aus einer Kombination verschiedener Zählfelder gebildet werden, kann die Abweichung bis zu +/-20% betragen. Weitere Informationen zum Echtzeitdienst: Der Echtzeitdatendienst enthält die aktiven Standorte der Zählfelder und Zählstellen über die mittels Infrarotdetektoren das aktuelle Fahrradaufkommen am Standort ermittelt wird. Die Daten werden im JSON-Format über die SensorThings API (STA) bereitgestellt . Für jedes Zählfeld und jede Zählstelle in der SensorThings API (STA) steht ein Objekt in der Entität "Thing". Für jede zeitliche (jeweiliges Zeitintervall) und räumliche Auflösungsebene (Zählfelder/Zählstellen) steht ein Objekt in der Entität "Datastreams". Die Echtzeitdaten zur Anzahl Fahrräder je Zeitintervall und Raumeinheit wird in der STA in der Entität "Observations" veröffentlicht. Die zeitlichen und räumlichen Auflösungsebenen sind der Datensatzbeschreibung zu entnehmen. Alle Zeitangaben sind in der koordinierten Weltzeit (UTC) angegeben. In der Entität Datastreams gibt es im JSON-Objekt unter dem "key" "properties" weitere "key-value-Paare". In Anlehnung an die Service- und Layerstruktur im GIS haben wir Service und Layer als zusätzliche "key-value-Paare" unter dem JSON-Objekt properties eingeführt. Hier ein Beispiel: { "properties":{ "serviceName": "HH_STA_HamburgerRadzaehlnetz", "layerName": "Anzahl_Fahrraeder_Zaehlfeld_5-Min", "key":"value"} } Verfügbare Layer im layerName sind: * Anzahl_Fahrraeder_Zaehlfeld_5-Min * Anzahl_Fahrraeder_Zaehlstelle_15-Min * Anzahl_Fahrraeder_Zaehlstelle_1-Stunde * Anzahl_Fahrraeder_Zaehlstelle_1-Tag * Anzahl_Fahrraeder_Zaehlstelle_1-Woche Mit Hilfe dieser "key-value-Paare" können dann Filter für die REST-Anfrage definiert werden, bspw. https://iot.hamburg.de/v1.0/Datastreams?$filter=properties/serviceName eq 'HH_STA_HamburgerRadzaehlnetz' and properties/layerName eq 'Anzahl_Fahrraeder_Zaehlfeld_5-Min' Die Echtzeitdaten kann man auch über einen MQTT-Broker erhalten. Die dafür notwendigen IDs können über eine REST-Anfrage bezogen werden und dann für das Abonnement auf einen Datastream verwendet werden: MQTT-Broker: iot.hamburg.de Topic: v1.0/Datastream({id})/Observations
Im Rahmen des Bewertungssystems Nachhaltiges Bauen sollen die vorhandenen Kriteriensteckbriefe für Schallschutz und akustischen Komfort für Büro-, Unterrichts- und Laborgebäude auf Basis der normativen und arbeitsschutzrechtlichen Festlegungen und Empfehlungen inhaltlich aktualisiert werden. Bei der Festlegung der Bewertungsanforderungen erfolgt eine Abwägung zwischen Komfort- und Gesundheit, anerkannten Regeln der Technik und ökonomischer Umsetzbarkeit. Ausgangslage: Das BMUB hat für Bundesgebäude verbindliche Qualitätsvorgaben an ganzheitlich optimierte Gebäude im Leitfaden Nachhaltiges Bauen und im Bewertungssystem Nachhaltiges Bauen (BNB) festgelegt. Seit Oktober 2013 ist das Bewertungssystem BNB verpflichtend für die Planung und Realisierung von Gebäuden des Bundes anzuwenden. Im Bewertungssystem wurden auch konkrete Ansätze zum Schallschutz und raumakustischen Komfort formuliert. Im Rahmen der kürzlich abgeschlossenen Evaluierung und Harmonisierung des Bewertungssystems (BNB Version 2015) wurden die Anforderungen an den Schallschutz und den raumakustischen Komfort an die zwischenzeitlich gewonnenen Erkenntnisse im Hinblick auf weiterentwickelte Normen und Richtlinien angepasst. Diese Anpassung ist jedoch noch nicht vollständig erfolgt, da beispielweise die Fortschreibung der DIN 4109 und der VDI 2569 noch nicht abgeschlossen war. Daher ist eine weitere inhaltliche Aktualisierung unter Einbeziehung der fortgeschriebenen DIN 4109 und VDI 2569 notwendig. Ziel: Ziel des Projektes ist die inhaltliche Aktualisierung der BNB Kriteriensteckbriefe für Schallschutz und akustischen Komfort bei Büro-, Unterrichts- und Laborgebäuden unter Einbeziehung der fortgeschriebenen DIN 4109 und VDI 2569. Es wird ein realistisches und praktikables Bewertungssystem erarbeitet, mit dem die Einhaltung von Mindestanforderungen nach aktuell gültigen gesetzlichen Regeln bzw. allgemein anerkannten Regeln der Technik geprüft werden kann. Weiterhin ist eine abgestufte Bewertung höherer Qualitätsanforderungen vorgesehen, bei der eine Abwägung zwischen Komfort und Gesundheit, Regeln der Technik sowie ökonomischer Umsetzbarkeit zu treffen ist. Darüber hinaus erfolgt ein Vergleich zwischen nationalen und internationalen Vorgaben bzw. Bewertungsansätzen für Bau- und Raumakustik.
Um die Klaeranlage Limburg nach den anerkannten Regeln der Technik zu betreiben, wurde im Jahr 1986 eine Erweiterungsentwurf erarbeitet, der eine gezielte Stickstoffelimination durch Nitrifikation und Denitrifikation ermoeglichen sollte. Aufgrund der seither gewonnenen Erkenntnisse auf dem Gebiet der weitergehenden Abwasserreinigung, war eine wissenschaftliche Ueberpruefung des Entwurfes sinnvoll. Dieser umfasste Messphasen zur Erstellung aktueller Stoffbilanzen sowie zur Erfassung dynamischer Belastungszustaende. Diese dienten als Grundlage fuer dynamische Simulationen mit einem am Fachgebiet Siedlungswasserwirtschaft entwickelten mathematischen Modell (SIMKA) fuer Klaeranlagen. Die Reinigungsleistung der Klaeranlage wurde fuer verschiedene Ausbauvarianten untersucht und Empfehlungen fuer eine optimierte Erweiterung gegeben.
Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Abbauverhalten und Grenzwerte von Nitrifikations- und Ureasehemmern im Trinkwasser Abbauverhalten von Nitrifikations- und Ureasehemmern Zum Abbauverhalten von Nitrifikations- und Ureasehemmern existieren Studien, die den Abbau in Böden untersuchen, beispielsweise die nachfolgend aufgelisteten Publikationen. Bereits 1992 wurde das Abbauverhalten des Nitrifikationshemmers Dicyandiamide (DCD) in ei- 1 ner wissenschaftlichen Studie untersucht. In Modellexperimenten wurde DCD in verschiedenen Konzentrationen auf den Boden aufgetragen und bei unterschiedlichen Temperaturen inkubiert. In einer „sterilen“ Versuchsanordnung verschwand DCD innerhalb von 7 Tagen. Die Zugabe von Fe2O3 hatte keine Auswirkungen auf das Abbauverhalten. In vorbehandelten Böden begann die DCD-Mineralisierung bei allen untersuchten Temperaturen und Konzentrationen sofort ohne Ver- zögerungsphase. Durch Temperaturerhöhung konnte die Mineralisierung beschleunigt werden. In nicht vorbehandelten Böden kam es zu Verzögerungen im Abbau. Das Abbauverhalten des Ureaseinhibitors Phenylphosphorsäurediamid (PPDA) in gepufferten 2 und nicht gepufferten Lösungen wurde in einer Publikation aus dem Jahre 1989 untersucht. Die Autoren stellten fest, dass sich das Verhalten durch Puffersalze stark beeinflussen lässt. Der Ab- bau von PPDA auf überschwemmten Böden war abhängig vom pH-Wert des Wassers. Unterhalb einer bestimmten Konzentration zeigte PPDA keine Urease-hemmende Eigenschaft mehr. In einer aktuellen Studie aus dem Jahr 2015 wird die Zerfallskinetik des Ureasehemmers N- (n-Butyl) thi- 3 ophosphorsäuretriamid (NBPT) unter biotischen und abiotischen Bedingungen untersucht. 1 Rajbanshi, S.S., Benckiser, G., Ottow, J.C.G. (1992): Effects of Concentration, Incubation-Temperature, and Re- peated Applications on Degradation Kinetics of Dicyandiamide (Dcd) in Model Experiments with A Silt Loam Soil. Biology and Fertility of Soils 13 (2), 61-64. 2 B. Byrnes, K. Vilsmeier, E. Austin, A. Amberger (1989): Degradation of the urease inhibitor phenyl phosphorodi- amidate in solutions and floodwaters, J. Agric. Food Chem., 1989, 37 (2), pp 473–477. 3 R.E. Engel, B.D. Towey, E. Gravens (2015): Degradation of the Urease Inhibitor NBPT as Affected by Soil pH, Soil Sci. Soc. Am. J. 79:1674-1683. doi:10.2136/sssaj2015.05.0169. WD 8 - 3000 - 082/16 (19. Dezember 2016) © 2016 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Abbauverhalten und Grenzwerte von Nitrifikations- und Ureasehemmern im Trinkwasser NBPT zeigte exponentielle Zerfallsmuster im Boden, wobei n-Butylamin ein primäres Reaktions- produkt war. Die berechnete NBPT-Halbwertszeit in nicht sterilisiertem Boden betrug 0,07, 0,59, 2,70 und 3,43 Tage bei pH 5.1, 6.1, 7.6 bzw. 8.2. Die Autoren schließen, dass die chemische Hyd- rolyse wahrscheinlich für den Abbau von NBPT in sauren bis schwach alkalischen Böden (pH 5.1-7.6) besonders bedeutend ist. Dahingegend sehe es so aus, als sei der mikrobielle Abbau unter stärker alkalischen Bedingungen (pH 8.2) besonders wichtig. Zum Abbauverhalten von Nitrifikations- und Ureasehemmern in Kläranlagen und Oberflächenge- wässern konnten keine aktuellen wissenschaftlichen Studien gefunden werden. Grenzwerte für Nitrifikations- und Ureasehemmer im Trinkwasser Gemäß Trinkwasserverordnung (TrinkwV) gibt es keinen konkreten Grenzwert für Nitrifikations- 4 und Ureasehemmer. Allerdings heißt es in der Trinkwasserverordnung §6 Absatz 3: „Konzentrationen von chemi- schen Stoffen, die das Trinkwasser verunreinigen oder seine Beschaffenheit nachteilig beeinflus- sen können, sollen so niedrig gehalten werden, wie dies nach den allgemein anerkannten Regeln 5 der Technik mit vertretbarem Aufwand unter Berücksichtigung von Einzelfällen möglich ist." *** 4 Weitere Informationen sind auf den Seiten des Umweltbundesamtes zu finden: Rechtliche Grundlagen, Empfeh- lungen und Regelwerk, Die Trinkwasserverordnung soll die Qualität des Wassers schützen und verbessern. Sie basiert auf dem deutschen Infektionsschutz-Gesetz und der EG-Trinkwasserrichtlinie. Im Internet abrufbar un- ter: https://www.umweltbundesamt.de/themen/wasser/trinkwasser/rechtliche-grundlagen-empfehlungen-regel- werk [zuletzt abgerufen am 19. Dezember 2016]. 5 Die Trinkwasserverordnung vom 21. Mai 2001ziletzt geändert am 10. März 2016 (BGBl. I S.459) ist im Internet abrufbar unter: http://www.gesetze-im-internet.de/trinkwv_2001/BJNR095910001.html [zuletzt abgerufen am 19. Dezember 2016]. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)
Wohnungsstationen sind aufgrund ihres geringen Volumens an Trinkwarmwasser bei bestimmungsgemäßem Betrieb der Zapfstellen eine Möglichkeit, in Mehrfamilienhäusern hygienische Bestimmungen und Effizienzanforderungen zu vereinbaren und regenerative Wärmeerzeuger zu begünstigen. Überwiegend werden die Regelarmaturen jedoch statisch eingestellt und arbeiten informationstechnisch isoliert voneinander und von der Wärmezentrale. Ein digital vernetzter Betrieb mit bedarfsgeführter, adaptiver Regelung könnte den Endenergieverbrauch für die Wärmeversorgung signifikant reduzieren. Ziel des Forschungsprojekts ist es, smarte (=digital vernetzbare, intelligent geregelte) Wohnungsstationen zu entwickeln und eine vernetzte, hocheffiziente, regenerative Wärmeversorgung in Labor- und Feldmessungen sowie in Systemsimulationen nachzuweisen. Um diese Ziele zu erreichen und zu demonstrieren haben sich drei deutsche Hersteller von Wohnungsstationen, ein Umsetzungspartner und eine Forschungseinrichtung zusammengeschlossen. Am ISFH wird eine Prüf- und Bewertungsmethode für smarte Wohnungsstationen erarbeitet, die es erlaubt, diese im Vergleich zu Standard-Wohnungsstationen nach mehreren Kriterien zu bewerten und sie zu optimieren. Zudem werden in Simulationsstudien intelligente Regelungskonzepte und unterschiedliche Ausbaugrade der Vernetzung bewertet. Die Hersteller instrumentieren mit Ecovillage Hannover eG drei Pilot- und Demonstrationsobjekte und bewerten die Effizienz der Wärmeverteilung. Der Endenergieverbrauch der Wärmezentrale wird mit sieben weiteren Objekten verglichen. Begleitend werden Trinkwasseranalysen durch das NLGA durchgeführt und mit den Messdaten korreliert, um die Regeln der Technik bzgl. dezentraler Trinkwassererwärmung zu konkretisieren. In einem fachlichen Begleitkreis werden der BWP, der vdw und Klimaschutzakteure involviert. Die Ergebnisse werden auf Workshops, beim IEA EBC Annex 84 sowie in Fachartikeln bei wissenschaftlichen Zeitschriften verbreitet.
Wohnungsstationen sind aufgrund ihres geringen Volumens an Trinkwarmwasser bei bestimmungsgemäßem Betrieb der Zapfstellen eine Möglichkeit, in Mehrfamilienhäusern hygienische Bestimmungen und Effizienzanforderungen zu vereinbaren und regenerative Wärmeerzeuger zu begünstigen. Überwiegend werden die Regelarmaturen jedoch statisch eingestellt und arbeiten informationstechnisch isoliert voneinander und von der Wärmezentrale. Ein digital vernetzter Betrieb mit bedarfsgeführter, adaptiver Regelung könnte den Endenergieverbrauch für die Wärmeversorgung signifikant reduzieren. Ziel des Forschungsprojekts ist es, smarte (=digital vernetzbare, intelligent geregelte) Wohnungsstationen zu entwickeln und eine vernetzte, hocheffiziente, regenerative Wärmeversorgung in Labor- und Feldmessungen sowie in Systemsimulationen nachzuweisen. Um diese Ziele zu erreichen und zu demonstrieren haben sich drei deutsche Hersteller von Wohnungsstationen, ein Umsetzungspartner und eine Forschungseinrichtung zusammengeschlossen. Am ISFH wird eine Prüf- und Bewertungsmethode für smarte Wohnungsstationen erarbeitet, die es erlaubt, diese im Vergleich zu Standard-Wohnungsstationen nach mehreren Kriterien zu bewerten und sie zu optimieren. Zudem werden in Simulationsstudien intelligente Regelungskonzepte und unterschiedliche Ausbaugrade der Vernetzung bewertet. Die Hersteller instrumentieren mit Ecovillage Hannover eG drei Pilot- und Demonstrationsobjekte und bewerten die Effizienz der Wärmeverteilung. Der Endenergieverbrauch der Wärmezentrale wird mit sieben weiteren Objekten verglichen. Begleitend werden Trinkwasseranalysen durch das NLGA durchgeführt und mit den Messdaten korreliert, um die Regeln der Technik bzgl. dezentraler Trinkwassererwärmung zu konkretisieren. In einem fachlichen Begleitkreis werden der BWP, der vdw und Klimaschutzakteure involviert. Die Ergebnisse werden auf Workshops, beim IEA EBC Annex 84 sowie in Fachartikeln bei wissenschaftlichen Zeitschriften verbreitet.
Wohnungsstationen sind aufgrund ihres geringen Volumens an Trinkwarmwasser bei bestimmungsgemäßem Betrieb der Zapfstellen eine Möglichkeit, in Mehrfamilienhäusern hygienische Bestimmungen und Effizienzanforderungen zu vereinbaren und regenerative Wärmeerzeuger zu begünstigen. Überwiegend werden die Regelarmaturen jedoch statisch eingestellt und arbeiten informationstechnisch isoliert voneinander und von der Wärmezentrale. Ein digital vernetzter Betrieb mit bedarfsgeführter, adaptiver Regelung könnte den Endenergieverbrauch für die Wärmeversorgung signifikant reduzieren. Ziel des Forschungsprojekts ist es, smarte (=digital vernetzbare, intelligent geregelte) Wohnungsstationen zu entwickeln und eine vernetzte, hocheffiziente, regenerative Wärmeversorgung in Labor- und Feldmessungen sowie in Systemsimulationen nachzuweisen. Um diese Ziele zu erreichen und zu demonstrieren haben sich drei deutsche Hersteller von Wohnungsstationen, ein Umsetzungspartner und eine Forschungseinrichtung zusammengeschlossen. Am ISFH wird eine Prüf- und Bewertungsmethode für smarte Wohnungsstationen erarbeitet, die es erlaubt, diese im Vergleich zu Standard-Wohnungsstationen nach mehreren Kriterien zu bewerten und sie zu optimieren. Zudem werden in Simulationsstudien intelligente Regelungskonzepte und unterschiedliche Ausbaugrade der Vernetzung bewertet. Die Hersteller instrumentieren mit Ecovillage Hannover eG drei Pilot- und Demonstrationsobjekte und bewerten die Effizienz der Wärmeverteilung. Der Endenergieverbrauch der Wärmezentrale wird mit sieben weiteren Objekten verglichen. Begleitend werden Trinkwasseranalysen durch das NLGA durchgeführt und mit den Messdaten korreliert, um die Regeln der Technik bzgl. dezentraler Trinkwassererwärmung zu konkretisieren. In einem fachlichen Begleitkreis werden der BWP, der vdw und Klimaschutzakteure involviert. Die Ergebnisse werden auf Workshops, beim IEA EBC Annex 84 sowie in Fachartikeln bei wissenschaftlichen Zeitschriften verbreitet.
| Origin | Count |
|---|---|
| Bund | 79 |
| Land | 31 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 59 |
| Text | 32 |
| Umweltprüfung | 12 |
| unbekannt | 8 |
| License | Count |
|---|---|
| geschlossen | 36 |
| offen | 75 |
| Language | Count |
|---|---|
| Deutsch | 108 |
| Englisch | 11 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 5 |
| Datei | 2 |
| Dokument | 28 |
| Keine | 66 |
| Unbekannt | 1 |
| Webseite | 27 |
| Topic | Count |
|---|---|
| Boden | 58 |
| Lebewesen und Lebensräume | 69 |
| Luft | 47 |
| Mensch und Umwelt | 111 |
| Wasser | 67 |
| Weitere | 104 |