Neue Materialien ermöglichen neue Bauformen und Konstruktionsarten. Was so einfach klingt, ist in der Realität oft ein langer, mühsamer und nicht selten mit Irrtümern gepflasterter Weg. Im Bauwesen dauern Innovationsprozesse aufgrund hoher Anforderungen an Sicherheit und Dauerhaftigkeit und wegen aufwändiger Normungs- und Zulassungsverfahren besonders lange. Dies gilt auch und insbesondere für leistungsfähige Baustoffkombinationen wie Textil- und Carbonbeton, die einen Paradigmenwechsel oder gar eine Revolution im Bauen mit Beton, dem weltweit mengenmäßig wichtigsten Baustoff, mit sich bringen werden. Mit diesen Baustoffkombinationen können gleichzeitig der enorme Ressourcenverbrauch und der CO2-Ausstoß der Bauindustrie wesentlich verringert, aber auch zusätzliche Funktionen erschlossen werden. Erste Bauprojekte mit den neuen Materialien verdeutlichen aber zugleich, dass zunächst weiterhin nach traditionellen, dem Stahlbeton entlehnten Konstruktionsprinzipien gebaut wird, herkömmliche Materialien also lediglich substituiert werden. Erst in Verbindung mit intelligenten Konstruktionsstrategien wird das volle Potential des innovativen Werkstoffs Carbonbeton ausgenutzt. Baustoffgerechte Methoden für das Entwerfen, Modellieren und Konstruieren mit neuen Werkstoffen bedürfen einer tiefergehenden Grundlagenforschung. Um vorhandene traditionelle Entwurfsprinzipien zu hinterfragen, gegenseitige Abhängigkeiten von Materialien zu begreifen und darauf aufbauend eine neue Entwurfs- und Konstruktionsstrategie zu etablieren, ist ein umfassender und ganzheitlicher Ansatz nötig. Nur so können neue, dem innovativen Hochleistungswerkstoff Carbonbeton gerechte Leichtbauprinzipien erarbeitet werden. Zentrale Ideengeber für Bauelementgeometrien sind dabei sowohl die Biologie, hier vor allem Botanik, als auch weitere Fachbereiche wie etwa Mathematik und Kunst. Angestrebt werden Konstruktionsformen aus mineralischen Kompositen, die Kräfte überwiegend durch Normalspannungen abtragen und mit neuen, industriellen, maschinengestützten Fertigungsmethoden hergestellt werden. Die als zielführend erkannten Konstruktionsstrategien ermöglichen eine vollkommen andere Formensprache. Dabei ist die Entwicklung neuartiger Strukturen eng verknüpft mit Fragen der Herstellbarkeit unter Berücksichtigung einer begleitenden produktbezogenen Nachhaltigkeitsbewertung. Losgelöst von heutigen, etablierten Denkmustern sollen die Grundlagen für eine neue Form des Bauens mit Beton auf Basis tiefgreifender Erkenntnisse zum strukturmechanischen Verhalten neuartiger mineralisch basierter Strukturen geschaffen werden. Die neuen Konstruktionsstrategien und Werkstoffkombinationen reduzieren Ressourcen- und Energieverbrauch durch bisher unbekannte Leichtbauprinzipien bei gleichzeitig hoher Gebrauchstauglichkeit, Tragsicherheit und Dauerhaftigkeit und spiegeln sich auch in einer anspruchsvollen Ästhetik wider, die sich zu einer neuen ' Kunst des Bauens' entwickeln wird.
Zielsetzung: In der additiven Fertigung ist es üblich, dass die eingesetzten Ausgangsmaterialien nicht vollständig verwendet werden können. Für die am weitesten verbreiteten pulverbettbasierten Verfahren MJF (Multi-Jet-Fusion) und SLS (Selektives Laser-Sintern) mit dem Material PA12 bedeutet das, dass bis zu 50 % des Pulvers am Ende nicht weiterverwendet und entsorgt werden müssen. Ziel des Vorhabens ist die Entwicklung eines innovativen Materials für das Binder-Jetting-Verfahren unter Verwendung der von Additive Elements entwickelten TLC-Technologie (Thermal Liquid Curing). Durch die nahezu vollständige Wiederverwendbarkeit des Pulvers (>98 %) streben wir eine Reduktion des Pulver-verbrauchs um mehr als 50 % im Vergleich zum MJF-Verfahren an - bei gleichzeitig verbesserten mechanischen Eigenschaften (Bruchfestigkeit von mindestens 45 MPa und Bruchdehnung von 10 %). Zusätzlich ermöglicht unser Verfahren eine Reduzierung des Energieverbrauchs um 81 %, da es mit deutlich niedrigeren Temperaturen arbeitet (40-70 °C anstatt >200 °C bei MJF/SLS)
Der Schotteroberbau im Bahnbau kommt durch gesteigerte Achslasten (bis 22,50 t) und höhere Geschwindigkeiten (bis 330 km/h) an Belastungsgrenzen. Aus diesem Grund wird seit ca. 20 Jahren für Schnellfahrstrecken die 'Feste Fahrbahn' im Netz der DB AG eingesetzt. Ziel war vor allem der sichere Einsatz auf Strecken mit hohen Geschwindigkeiten. Nachhaltigkeitsaspekte spielten damals keine Rolle. In Deutschland geht man weiterhin davon aus, dass die Feste Fahrbahn in der aktuellen Form aus Beton und Asphalt bei hohen Belastungen einzusetzen ist. Allerdings bringt sie aus heutiger Sicht Probleme mit sich. Durch den Einsatz dieser Platten kommt es zu einem umfangreich gesteigerten Ressourceneinsatz von Beton bzw. Asphalt. Zudem wird eine hydraulisch gebundene Tragschicht (HGT) als Untergrundverbesserung zwingend notwendig. Dabei entstehen unter anderem drei wesentliche Probleme: 1. Extrem erhöhter Ressourcenverbrauch im Vergleich zu Oberbau aus Natursteinschotter, 2. Extrem kurze Nutzungsdauern durch deutlich erhöhte Steifigkeit im Vergleich zu Schotteroberbau und damit verbundenen Zwangskräften und Setzungsrissen und 3. Deutlich erhöhte Schall- und Vibrationsemissionen durch eine höhere Steifigkeit und Oberflächenglätte der Platte im Gegensatz zu unregelmäßigem Natursteinschotter. Ziel des industriellen Forschungsprojektes ist es, Forschungen zu einer Festen Fahrbahn aus recycelten Kunststoffen durchzuführen, um zu eruieren, ob dadurch u.a. die erwähnten Probleme in Hinblick auf die ressourcentechnischen, klimatischen und baulichen Aspekte im Sinne der Circular Economy gemindert bzw. gelöst werden können. Hierbei soll durch die Kooperation der Verbundpartner TU Berlin und RECON-T GmbH besonders auch in Hinblick auf die genehmigungsrechtliche Komplexität neuer Bahnprodukte ein ganzheitlicher Lösungsansatz eruiert werden. Das Projekt soll mit der Herstellung eines Prototypens abschließen.
Der Schotteroberbau im Bahnbau kommt durch gesteigerte Achslasten (bis 22,50 t) und höhere Geschwindigkeiten (bis 330 km/h) an Belastungsgrenzen. Aus diesem Grund wird seit ca. 20 Jahren für Schnellfahrstrecken die 'Feste Fahrbahn' im Netz der DB AG eingesetzt. Ziel war vor allem der sichere Einsatz auf Strecken mit hohen Geschwindigkeiten. Nachhaltigkeitsaspekte spielten damals keine Rolle. In Deutschland geht man weiterhin davon aus, dass die Feste Fahrbahn in der aktuellen Form aus Beton und Asphalt bei hohen Belastungen einzusetzen ist. Allerdings bringt sie aus heutiger Sicht Probleme mit sich. Durch den Einsatz dieser Platten kommt es zu einem umfangreich gesteigerten Ressourceneinsatz von Beton bzw. Asphalt. Zudem wird eine hydraulisch gebundene Tragschicht (HGT) als Untergrundverbesserung zwingend notwendig. Dabei entstehen unter anderem drei wesentliche Probleme: 1. Extrem erhöhter Ressourcenverbrauch im Vergleich zu Oberbau aus Natursteinschotter, 2. Extrem kurze Nutzungsdauern durch deutlich erhöhte Steifigkeit im Vergleich zu Schotteroberbau und damit verbundenen Zwangskräften und Setzungsrissen und 3. Deutlich erhöhte Schall- und Vibrationsemissionen durch eine höhere Steifigkeit und Oberflächenglätte der Platte im Gegensatz zu unregelmäßigem Natursteinschotter. Ziel des industriellen Forschungsprojektes ist es, Forschungen zu einer Festen Fahrbahn aus recycelten Kunststoffen durchzuführen, um zu eruieren, ob dadurch u.a. die erwähnten Probleme in Hinblick auf die ressourcentechnischen, klimatischen und baulichen Aspekte im Sinne der Circular Economy gemindert bzw. gelöst werden können. Hierbei soll durch die Kooperation der Verbundpartner TU Berlin und RECON-T GmbH besonders auch in Hinblick auf die genehmigungsrechtliche Komplexität neuer Bahnprodukte ein ganzheitlicher Lösungsansatz eruiert werden. Das Projekt soll mit der Herstellung eines Prototypens abschließen.
Der Schotteroberbau im Bahnbau kommt durch gesteigerte Achslasten (bis 22,50 t) und höhere Geschwindigkeiten (bis 330 km/h) an Belastungsgrenzen. Aus diesem Grund wird seit ca. 20 Jahren für Schnellfahrstrecken die 'Feste Fahrbahn' im Netz der DB AG eingesetzt. Ziel war vor allem der sichere Einsatz auf Strecken mit hohen Geschwindigkeiten. Nachhaltigkeitsaspekte spielten damals keine Rolle. In Deutschland geht man weiterhin davon aus, dass die Feste Fahrbahn in der aktuellen Form aus Beton und Asphalt bei hohen Belastungen einzusetzen ist. Allerdings bringt sie aus heutiger Sicht Probleme mit sich. Durch den Einsatz dieser Platten kommt es zu einem umfangreich gesteigerten Ressourceneinsatz von Beton bzw. Asphalt. Zudem wird eine hydraulisch gebundene Tragschicht (HGT) als Untergrundverbesserung zwingend notwendig. Dabei entstehen unter anderem drei wesentliche Probleme: 1. Extrem erhöhter Ressourcenverbrauch im Vergleich zu Oberbau aus Natursteinschotter, 2. Extrem kurze Nutzungsdauern durch deutlich erhöhte Steifigkeit im Vergleich zu Schotteroberbau und damit verbundenen Zwangskräften und Setzungsrissen und 3. Deutlich erhöhte Schall- und Vibrationsemissionen durch eine höhere Steifigkeit und Oberflächenglätte der Platte im Gegensatz zu unregelmäßigem Natursteinschotter. Ziel des industriellen Forschungsprojektes ist es, Forschungen zu einer Festen Fahrbahn aus recycelten Kunststoffen durchzuführen, um zu eruieren, ob dadurch u.a. die erwähnten Probleme in Hinblick auf die ressourcentechnischen, klimatischen und baulichen Aspekte im Sinne der Circular Economy gemindert bzw. gelöst werden können. Hierbei soll durch die Kooperation der Verbundpartner TU Berlin und RECON-T GmbH besonders auch in Hinblick auf die genehmigungsrechtliche Komplexität neuer Bahnprodukte ein ganzheitlicher Lösungsansatz eruiert werden. Das Projekt soll mit der Herstellung eines Prototypens abschließen.
Zielsetzung: Im Bauwesen besteht ein erheblicher Bedarf an nachhaltigen und ressourcenschonenden Baustoffen, um den wachsenden Anforderungen des Klimaschutzes und der Energieeffizienz gerecht zu werden. Herkömmliche Baustoffe, insbesondere solche auf mineralischer Basis, verursachen hohe CO2-Emissionen in Herstellung und Nutzung. Zudem sind viele Materialien nicht biologisch abbaubar und belasten die Umwelt langfristig durch Abfall und Schadstoffemissionen. Als umweltfreundliche Alternative gewinnt Hanfkalk zunehmend an Bedeutung. Hanfkalk kombiniert die Vorteile nachwachsender Rohstoffe (Hanffasern) mit mineralischer Bindung und bietet hervorragende Eigenschaften wie gute Wärmedämmung, Feuchtigkeitsregulierung und nachhaltige CO2-Bindung. Dennoch bestehen derzeit wesentliche Defizite: Die Herstellungsprozesse sind oft nicht standardisiert, die Rezepturen variieren stark und es fehlen verlässliche Qualitäts- und Prüfkriterien. Dies führt zu Unsicherheiten bei der Verarbeitung und erschwert die breite Marktdurchdringung. Die damit verbundenen Hemmnisse verhindern bislang, dass Hanfkalk in großem Maßstab und standardisiert im Bauwesen eingesetzt wird. Die fehlende Normierung und Qualitätssicherung begrenzen die Akzeptanz bei Planern, Handwerk und Industrie und verhindern eine flächendeckende Anwendung trotz des hohen ökologischen Potenzials. Das Fördervorhaben setzt genau hier an: Ziel ist es, Hanfkalk als nachhaltigen Baustoff weiterzuentwickeln, seine Herstellungsprozesse und Rezepturen systematisch zu optimieren sowie neue, praxisgerechte Prüfkriterien zu etablieren. Dadurch soll eine verlässliche, reproduzierbare Qualität gewährleistet werden, die Grundlage für eine Standardisierung und Normierung bildet. Durch die Umsetzung dieser Zielsetzungen werden bedeutende umweltrelevante Probleme adressiert: Die Substitution konventioneller Baustoffe durch Hanfkalk kann den CO2-Ausstoß im Bauwesen deutlich reduzieren, den Einsatz nachwachsender Rohstoffe fördern und zur Kreislaufwirtschaft beitragen. Gleichzeitig erhöht die verbesserte Qualitätssicherung die Verarbeitbarkeit und Langlebigkeit der Baustoffe, was den Ressourcenverbrauch langfristig senkt. Insgesamt unterstützt das Projekt somit die Transformation zu einer klimafreundlichen und ressourcenschonenden Bauwirtschaft und leistet einen wichtigen Beitrag zur Erreichung der nationalen und internationalen Umwelt- und Klimaziele.
Zielsetzung: Das Projekt zielt darauf ab, die Potenziale und ersten Ansätze des zirkulären Wirtschaftens in Biosphärenreservaten zu untersuchen und regionale Circular Economy (CE) Aktionspläne in drei Biosphärenreservaten partizipativ zu entwickeln. Zirkuläres Wirtschaften ist ein Konzept, das darauf abzielt, Ressourcen effizienter zu nutzen, Abfälle zu minimieren und Umweltauswirkungen zu reduzieren, indem die Weiternutzung der Produkte und ihrer Bestandteile bereits bei der Entwicklung mitgedacht werden. Damit ist die CE ein Gegenentwurf zum linearen Wirtschaften, das auf Konsum und damit wachsendem Ressourcen- und Energieverbrauch basiert. Eine wesentliche Aufgabe von UNESCO-Biosphärenreservate ist es als Modellregionen nachhaltiger Entwicklung zu fungieren. Daher bieten Biosphärenreservate ideale Testumgebungen für die Entwicklung und Umsetzung von Ansätzen zirkulären Wirtschaftens, da sie bereits über etablierte Verwaltungsstrukturen, Fachwissen und starke regionale Netzwerke verfügen. Die Einbindung von Biosphärenreservatsverwaltungen, lokalen Unternehmen, Forschungseinrichtungen und der Zivilgesellschaft in die Entwicklung und Umsetzung von Circular Economy-Ansätzen kann dazu beitragen, Synergien zu schaffen und Kreisläufe zu stärken. Insgesamt bietet die Integration von Ansätzen zirkulären Wirtschaftens in Biosphärenreservate die Möglichkeit, nicht nur lokale Wirtschaftssysteme zu transformieren, sondern auch einen positiven Beitrag zum globalen Umweltschutz und zur nachhaltigen Entwicklung zu leisten. Die Umweltrelevanz von CE-Ansätzen liegt darin, dass sie dazu beitragen, Treibhausgasemissionen zu reduzieren, den Ressourcenverbrauch sowie das Abfallaufkommen zu verringern und den Biodiversitätsverlust zu begrenzen. Durch die Förderung von Bewusstseinsbildung, die Identifizierung regionaler Potenziale und die Vernetzung relevanter Akteure trägt das Projekt zur Förderung einer nachhaltigen und umweltfreundlichen Wirtschaftsweise bei. Das Projekt zeichnet sich durch seinen innovativen Charakter aus, da es erstmalig eine Sensibilisierung und einen Austausch für die Potenziale zirkulären Wirtschaftens in Biosphärenreservaten auf überregionaler Ebene ermöglicht. Insgesamt zielt das Projekt durch die Entwicklung regionaler Circular Economy Aktionspläne und dahinterstehenden Standards darauf ab, die Transformation zu einer nachhaltigen und zukunftsfähigen Wirtschaftsweise in Biosphärenreservaten voranzutreiben.
Zielsetzung: VIPs sind Hochleistungsdämmstoffe und bestehen vorrangig aus einem Stützkern aus pyrogener Kieselsäure, der energieintensiv in der Herstellung ist. VIPs werden in spezifischen Anwendungsfällen wie pharmazeutischen Transportboxen nach einer Nutzungsdauer von oft nur wenigen Jahren entsorgt, was zu erheblichen ökologischen und ökonomischen Belastungen führt: Hohe CO2-Emissionen: Die Produktion der pyrogenen Kieselsäure verursacht signifikante CO2-Emissionen. Entsorgung: VIPs werden meist deponiert oder verbrannt, da es kein etabliertes Recyclingverfahren gibt. Ressourcenverbrauch: Die Herstellung der Kieselsäure ist ressourcenintensiv. Das Projekt zielt darauf ab, ein Verfahren zur Kreislaufführung von VIP-Stützkernen mit einem maximalen Rezyklatanteil von mindestens 95 % zu entwickeln, ohne die Wärmeleitfähigkeit signifikant zu erhöhen. Dies soll durch folgende Maßnahmen erreicht werden: Entwicklung eines Recyclingprozesses: Ein Verfahren zur Extraktion und Wiederverwertung des alten Stützkernmaterials wird entwickelt und optimiert. Verschiedene Techniken sollen getestet werden, um eine optimale Verarbeitbarkeit und geringe Wärmeleitfähigkeit zu erreichen. Rückführungskonzept: Es wird ein Konzept erstellt, wie ausgemusterte VIPs an den Hersteller zurückgeliefert werden können. Dies könnte durch ein Pfandsystem oder durch wirtschaftliche Anreize für die Kunden erreicht werden. Insbesondere für pharmazeutische Transportboxen, die bereits teilweise rückgeführt werden, soll die Logistik verbessert werden. Umweltbilanzierung: Die Umweltwirkungen des Recyclingprozesses werden durch eine Life Cycle Assessment (LCA) quantifiziert. Ziel ist es, die ökologischen Vorteile im Vergleich zur herkömmlichen Herstellung aufzuzeigen und den ökologischen Fußabdruck zu reduzieren. Umweltbezogene Zielsetzungen: Reduktion von CO2-Emissionen und Energieverbrauch: Durch Wiederverwendung des Stützkernmaterials sollen die CO2-Emissionen und der Energieverbrauch signifikant reduziert werden. Verringerung von Abfällen: Durch die Einführung eines effektiven Recycling- und Rückführungsverfahrens sollen Deponie- und Verbrennungsabfälle minimiert werden. Optimierung der Herstellungskosten: Reduktion des Einsatzes neuer Rohstoffe durch Recycling. Dies soll zusätzliche wirtschaftliche Anreize für Firmen schaffen, sodass ökologischer und ökonomischer Nutzen erreicht wird.
Zielsetzung: Die Volatilität globaler Lieferketten in den letzten Jahren, steigende Erzeugerpreise für Verpackungsmaterialien und eine Ressourcenverschwendung durch Einwegverpackungen in der Industrielogistik erfordern neue, resiliente Produktionsansätze. Industrieunternehmen in Deutschland sehen sich besonders mit wachsendem Kostendruck und regulatorischen Anforderungen an nachhaltige Verpackungslösungen konfrontiert - bei gleichzeitigem Mangel an flexiblen, ökologischen Alternativen. PALPRINT adressiert dieses Defizit mit einem innovativen Systemansatz: einer modularen, vor Ort installierten Produktionslösung, die industriellen Kunden maßgeschneiderte Mehrwegverpackungen aus recycelten Kunststoffen ermöglicht - direkt am Bedarfsort, ohne Werkzeugkosten, ohne Lieferkettenrisiken. Der Lösungsansatz lautet 3D-Druck für die automatisierte Herstellung zirkulärer Mehrweg-Verpackungen für die Industrielogistik. Ziel des durch die DBU geförderten Vorhabens ist die technologische und betriebliche Entwicklung eines skalierbaren „System-as-a-Service“-Modells für die zirkuläre Verpackungsproduktion. Die Kombination aus generativem Design, lokalem Fused Granulate Fabrication (FGF)-3D-Druck und einem regional geschlossenen Materialkreislauf (DRAM-Ansatz) reduziert Ressourcenverbrauch, CO2-Emissionen und Abfallmengen entlang der gesamten Wertschöpfungskette. Konkret zielt das Vorhaben auf: - die Stabilisierung der Prozessparameter bei der automatisierten Herstellung von Verpackungen aus Rezyklaten, - die Weiterentwicklung der bestehenden generativen Designsoftware für Verpackungen, - die Erprobung eines lokalen Materialkreislaufs durch Rückführung und Wiederverwertung des Materials alter Ladungsträger für den exakt selben Produktionsprozess, - die Erprobung einer Pilotanlage zur dezentralen Produktion direkt bei Kundenunternehmen. Die Fördermittel der DBU unterstützen PALPRINT in der risikoreichen Vorentwicklungsphase bei der Etablierung eines nachhaltigen Produktionssystems, das ökologische Wirkung mit wirtschaftlicher Skalierbarkeit vereint. Die Wirkung erstreckt sich auf mehrere Nachhaltigkeitsziele: Ressourcenschonung und Abfallvermeidung (SDG 12), Klimaschutz durch CO2-Einsparung und regionale Produktion (SDG 13), Innovation und resiliente Industrie (SDG 9), sowie die Schaffung qualifizierter Arbeitsplätze im Bereich GreenTech (SDG 8).
| Origin | Count |
|---|---|
| Bund | 997 |
| Land | 65 |
| Zivilgesellschaft | 7 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 17 |
| Förderprogramm | 717 |
| Text | 255 |
| unbekannt | 72 |
| License | Count |
|---|---|
| geschlossen | 325 |
| offen | 729 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 975 |
| Englisch | 197 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 6 |
| Datei | 21 |
| Dokument | 97 |
| Keine | 610 |
| Webseite | 391 |
| Topic | Count |
|---|---|
| Boden | 1062 |
| Lebewesen und Lebensräume | 673 |
| Luft | 620 |
| Mensch und Umwelt | 1062 |
| Wasser | 547 |
| Weitere | 1000 |