Das Projekt "Glasproduktion in Lohr am Main" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz. Es wird/wurde ausgeführt durch: Gerresheimer AG.Um die Glasproduktion nachhaltig und klimafreundlich zu gestalten, unterstützt das Bundesumweltministerium die Gerresheimer AG am Standort Lohr am Main bei der Anwendung eines neuen Verfahrens zur Produktion hochwertiger Primärverpackungen aus Glas für die Pharma- und Kosmetikindustrie. Damit können die verursachten jährlichen CO2-Emissionen um rund 22.000 Tonnen pro Jahr reduziert werden. Zudem ermöglicht die Optimierung des Produktionsprozesses die Einsparung von 5.000 Tonnen Rohmaterial pro Jahr. Die Mittel dazu stammen aus dem Umweltinnovationsprogramm des BMUV. Die Herstellung von Glasbehältern für die Pharma- und Kosmetikindustrie erfordert die Einhaltung hoher Qualitätsansprüche an das Glas sowie das Angebot einer breiten Produktpalette. Hierzu werden üblicherweise große Mengen an Energie und Rohstoffen eingesetzt. Mit dem geplanten Projekt wird das Unternehmen im Rahmen seiner ambitionierten globalen Nachhaltigkeitsstrategie in eine Schmelzwanne investieren, die im Vergleich zu konventionellen Schmelzwannen mit einem erheblich höheren Stromanteil betrieben werden kann. Hierzu wird Strom aus erneuerbaren Energien bezogen. Gleichzeitig wird das Unternehmen seinen Produktionsprozess mit einem innovativen Steuerungssystem ausstatten. Dieses ganzheitliche Projekt zur Glasproduktion gibt wichtige Impulse für eine klimafreundliche und nachhaltige Glasherstellung. Es hat Modellcharakter für die gesamte Glasindustrie. Mit dem Umweltinnovationsprogramm wird die erstmalige, großtechnische Anwendung einer innovativen Technologie gefördert. Das Vorhaben muss über den Stand der Technik hinausgehen und sollte Demonstrationscharakter haben.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Keramische Membranen für die Gastrennung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-1: Werkstoffsynthese und Herstellungsverfahren.In MemKoWI ist geplant, Membranverfahren für die Abtrennung von CO2 und H2 in Industrien zu untersuchen, in denen sie bisher nicht etabliert sind. Das Potenzial, dass sie sich hier als skalierbare und durch die Möglichkeiten verschiedene keramische und polymere Membranmaterialien zu innovativen Kombinationen Lösungen zu verschalten, flexible und anpassbare Technologie, erweist ist sehr groß. Allerdings ist ebenfalls mit erheblichen Risiken zu rechnen. Im Vergleich zu den bisher untersuchten Einsätzen von Membranverfahren zur CO2-Abtrennung aus Kohlekraftwerksrauchgasen, zeichnen sich die in MemKoWI adressierten Gase durch andere Zusammensetzungen aus. Somit kann die Einsetzbarkeit der Verfahren zwar durch Berechnungen abgeschätzt, deren stabiler Einsatz aber nur im Versuch im Betriebsumfeld nachgewiesen werden. Potenzielle Anwender können so von den Vorteilen der Membranverfahren überzeugt werden. In MemKoWI ist der Einsatz von drei Testanlagen geplant. Eine der Anlagen ist bereits vorhanden und soll modifiziert werden, während die beiden anderen Anlagen neu zu bauen sind. Die hiermit verbundenen Kosten sind weder aus der Grundfinanzierung der beteiligten Forschungsinstitutionen noch aus den F&E-Budgets der beteiligten Unternehmen zu finanzieren. Weiterhin stellt die Einbindung der Anlagen in Industriestandorte einen erheblichen, anderweitig nicht finanzierbaren Aufwand dar. Die für die Membranherstellung verwendeten Rohmaterialien müssen in hinreichender Menge beschafft, verarbeitet und in Membranmodule verbaut werden. Auch die Ausgaben hierfür übersteigen die F&E-Budgets. Das für die Durchführung der geplanten Arbeiten notwendige Personal kann nur zum Teil aus der Grundfinanzierung gestellt werden. Projektpersonal muss, gerade auch im Hinblick auf die Erstellung wissenschaftlicher Arbeiten, eingestellt werden und der Personalaufwand für die Betreuung der Testanlagen abgedeckt werden.
Das Projekt "Verfahren zur Synthese von Stärkeestern und deren technische Anwendung, TP3 Entwicklung von Herstellungsverfahren mikrofluidischer Systeme aus Thermostärke und Bewertung der Anwendungsmöglichkeiten in der Mikrofluidik" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: microfluidic ChipShop GmbH.
Das Projekt "Nachhaltigkeitsoptimiertes Life Cycle Assessment technologisch hochkomplexer Produkte am Beispiel Automobilbeleuchtung" wird/wurde ausgeführt durch: HELLA GmbH & Co. KGaA.
Das Projekt "Nachhaltigkeitsoptimiertes Life Cycle Assessment technologisch hochkomplexer Produkte am Beispiel Automobilbeleuchtung, Teilprojekt: Projektmanagement, Anforderungsmanagement, Entwicklung konstruktiver Maßnahmen und Erarbeitung der Übertragbarkeit auf Elektronik" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: HELLA GmbH & Co. KGaA.
Das Projekt "Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Pulverqualifizierung und zirkuläre Kreislaufwirtschaft von Stahlpulvern für die additive Fertigung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Ernst Krebs KG.Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.
Das Projekt "Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle" wird/wurde ausgeführt durch: Universität Bochum, Institut für Werkstoffe, Lehrstuhl Werkstofftechnik.Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.
Das Projekt "Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Erforschung der energieeffizienten, additiven Fertigung innovativer Schneidwaren" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Wüsthof GmbH.Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.
Das Projekt "Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: OWL AM Additive Manufacturing GmbH.Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.
Das Projekt "Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Erforschung der energieeffizienten, additiven Fertigung innovativer Instrumente für die Medizintechnik" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Aesculap AG.Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.
Origin | Count |
---|---|
Bund | 277 |
Land | 14 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 193 |
Text | 86 |
Umweltprüfung | 9 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 39 |
offen | 186 |
unbekannt | 66 |
Language | Count |
---|---|
Deutsch | 290 |
Englisch | 21 |
Resource type | Count |
---|---|
Archiv | 68 |
Datei | 67 |
Dokument | 90 |
Keine | 136 |
Multimedia | 2 |
Webseite | 70 |
Topic | Count |
---|---|
Boden | 224 |
Lebewesen & Lebensräume | 203 |
Luft | 150 |
Mensch & Umwelt | 291 |
Wasser | 132 |
Weitere | 289 |