API src

Found 419 results.

Related terms

Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling, Teilvorhaben: Reduktion des Klinkeranteils in Beton als Betonzusatzstoff und in Zement als Hauptbestandteil

Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Für die Betonherstellung streben wir einen reaktiven Betonzusatzstoff an, der Flugasche und andere Betonzusatzstoffe vollständig substituieren und ggf. übertreffen kann. Ziel ist ein k-Wert größer als 0,4. Bei Zement ist eine Hauptbestandteilreduktion des Klinkers von 35-50% Ziel des Forschungsprojektes. Hier soll ein CEM II/B und ein CEM II/C entwickelt werden.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Soil type and land use as potential control mechanisms of river eutrophication

Excessive nutrient input largely impacts community structure and functioning of stream ecosystems in Central Europe (eutrophication). Within this project, we aim to evaluate the eutrophication potential of stream ecosystems. As a first step to achieve this aim, main control mechanisms influencing stream eutrophication have to be identified. We will analyze the impact of soil nutritional status (especially phosphorus), soil storage capacity, and soil nutrient release as well as land use on periphyton-grazer interaction. Therefore, we will study the periphyton-grazer interaction in the running water of 4 small catchments that differ with respect to their nutritional status, speciation and release at a forest site and an pasture site. In the field survey we will study (1) The input of macro nutrients (P and N), (2) community structure and biomass of periphyton and grazers, (3) emergence and (4) complexity of the food web and compare the results among the catchments. The periphyton-grazer interaction along nutrient gradients will be studied in more detail using laboratory flumes. By the use of geostatistical and remote sensing techniques we will interpolate macro nutrient input, -speciation and seasonality for the different catchments and link this information to periphyton quantity and quality as well as to periphyton-grazer interaction.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Phosphorus transport along soil pathways in forested catchments

Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, When nano-scale meets biodiversity: retention and recycling mechanisms of organic phosphorus in soil

Soil organic matter is considered to become an increasingly important source of bioavailable phosphorus (P) with depletion of inorganic P within primary minerals. Current concepts on P cycling and mobilization of organic P largely ignore the formation of mineral-organic associations. This project aims to link processes occurring at the nanoscale on mineral surfaces with the bioavailability of organic P, with particular focus on the influence of biodiversity and establishment of functional niches by microbial communities on P recycling in soils. Along a soil P availability gradient the proportion of mineral-associated P as well as its composition (31P NMR and X-ray absorption near edge structure spectroscopy) will be determined and related to mineralogical soil properties. Based on adsorption and desorption experiments using both, monomeric and polymeric P sources, the recycling potential of mineral-bound organic P by various biotic communities (plants, mycorrhiza, bacteria) will be determined in mesocosm and field experiments. We expect to assess the relevance of mineral-associated organic P for the P recycling of forest ecosystems and to identify the major controlling abiotic and biotic variables.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Bedeutung der interspezifischen ektomykorrhizalen Pilzdiversität für die Ernährung von Waldökosystemen

Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.

Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling, Teilvorhaben: Materialanalyse und Umweltauswirkungen

Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Im Teilprojekt 'Materialanalyse und Umweltauswirkungen' werden zunächst durch das KIT-Institut für Industriebetriebslehre und Industrielle Produktion (IIP) relevante Stoffströme aufgezeigt. Am KIT-Institut für Massivbau und Baustofftechnologie (IMB/MPA/CMM) finden vertiefende Untersuchungen an den hergestellten Bindemitteln und den hergestellten Betonen statt, um sie ausführlich hinsichtlich ihres Kurz- und Langzeitverhaltens zu charakterisieren. Aufbauend auf den Arbeitspaketen aller Projektpartner führt das IIP eine begleitende Ökobilanzierung und Systemanalyse durch, um die Potentiale des neuartigen Betonzusatzstoffs fundiert aufzuzeigen. Hierbei wird der Antragsteller durch den Zement- und Transportbetonhersteller TBS, das Mineral- und Betonlabor mbl sowie das Recyclingunternehmen Scherer+Kohl, die Rudolf Peter GmbH & Co. KG und das Aufbereitungstechnikunternehmen Gebr. Pfeiffer (assoziierte Industriepartner) unterstützt.

Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling

Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Im Teilprojekt 'Materialanalyse und Umweltauswirkungen' werden zunächst durch das KIT-Institut für Industriebetriebslehre und Industrielle Produktion (IIP) relevante Stoffströme aufgezeigt. Am KIT-Institut für Massivbau und Baustofftechnologie (IMB/MPA/CMM) finden vertiefende Untersuchungen an den hergestellten Bindemitteln und den hergestellten Betonen statt, um sie ausführlich hinsichtlich ihres Kurz- und Langzeitverhaltens zu charakterisieren. Aufbauend auf den Arbeitspaketen aller Projektpartner führt das IIP eine begleitende Ökobilanzierung und Systemanalyse durch, um die Potentiale des neuartigen Betonzusatzstoffs fundiert aufzuzeigen. Hierbei wird der Antragsteller durch den Zement- und Transportbetonhersteller TBS, das Mineral- und Betonlabor mbl sowie das Recyclingunternehmen Scherer+Kohl, die Rudolf Peter GmbH & Co. KG und das Aufbereitungstechnikunternehmen Gebr. Pfeiffer (assoziierte Industriepartner) unterstützt.

Geologische Naturdenkmale in Hessen

Die Rekultivierung ausgebeuteter oder aufgelassener Rohstoff-Entnahmestellen muss, staerker als in der Vergangenheit geschehen, auf geowissenschaftlicher Basis durchgefuehrt werden. Landschaftspflegerische Massnahmen haben der oekonomischen Nachnutzung, d. h. der Abwehr drohender Gefaehrdung des Grundwassers, der Sicherung der Rohstoffreserven, der Bereitstellung von Baugrund fuer Wohn-, Industrie- und Verkehrsbauten oder von Deponiegelaende, der Erhaltung land- und forstwirtschaftlicher Nutzflaechen, der Einrichtung von Erholungs- und Biotopschutzgebieten u. a., Rechnung zu tragen. Konkurrierende Nutzungsansprueche und teilweise rigorose Sanierungsmassnahmen haben in den letzten Jahren mehrfach zur Vernichtung geologischer Naturdenkmale gefuehrt. Zur Abwendung weiterer Zerstoerungen wurde inzwischen eine geeignete Schutzformel in die Entwuerfe zu den regionalen Raumordnungsplaenen aufgenommen. Wie eine erste Bestandsaufnahme ergeben hat, stehen in Hessen gegenwaertig 139 geologische Naturdenkmale unter Schutz; daneben sind weitere 337 erhaltenswerte, aber naturschutzrechtlich noch ungeschuetzte Objekte vorhanden. Mit Unterstuetzung der Regionalen Planungsgemeinschaften und der Naturschutzbehoerden der Kreise sollen nach der Sicherstellung vermehrte Anstrengungen unternommen werden, die erdgeschichtlich bedeutsame Zeugnisse einer an geowissenschaftlichen Fragen zunehmend staerker interessierten Oeffentlichkeit als Anschauungsobjekte zu erschliessen.

Innovative Technologien zur Entwicklung eines neuartigen reaktiven Betonzusatzstoffs aus feinem Betonabbruch (Brechsand) - Ressourceneffizienz im Baustoffrecycling, Teilvorhaben: Rezepturentwicklung Beton und Demonstratorbau

Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Der Verbundpartner Mineral- und Betonlabor GmbH (mbl) führt die Entwicklung von Betonrezepturen, in einem weiteren Schritt von spezifischen Transportbetonrezepturen unter Verwendung des reaktiven Betonzusatzstoff durch. Des Weiteren wird für die Verifizierung der Entwicklung ein Demonstratorbauteil hergestellt, an dem Festbetonuntersuchungen durchgeführt werden können. Für mbl steht die Entwicklung von Prüfmethoden für die Detektierung geeigneter Ausgangsmaterialien (Brechsande) und die Entwicklung praxisgerechter Betonzusammensetzungen mit dem reaktiven Betonzusatzstoff im Vordergrund. Die im Projekt gewonnenen Erkenntnisse in der Charakterisierung und Untersuchung von Brechsanden kann mbl für die Weiterentwicklung von Betonen auch unter Verwendung anderer Ausgangsstoffe anwenden.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Spatial heterogeneity of phosphorus concentration and P speciation in German forest soils

In this project, we will investigate the spatial heterogeneity of soil phosphorus (concentration of total P, P speciation) in soils with different P status with modern analytical (synchrotron-based X-ray spectroscopy and spectromicroscopy) and geostatistical methods at different scales (soil aggregates: (sub)micron to mm scale; particular regions of soil profiles (e.g. root channels, surrounding of stones): mm to dm scale; entire soil profiles: dm to m scale; selected patches of the forest stand: m to 5m scale). We expect that our results will provide new insights about spatial heterogeneity patterns of soil P concentration and P speciation in forest soils and their relevance for P availability and P nutritional status of Norway spruce and European beech.

1 2 3 4 540 41 42