Systemraum: Entnahme Rohmaterial bis Asbest ab Werk Geographischer Bezug: Weltmix Zeitlicher Bezug: 2000-2004 Weitere Informationen: Betrachtung des Bergbaus und der Verarbeitung anhand ähnlicher Prozesse bei anderen Rohstoffen Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: hpts. Tagebau Rohstoff-Förderung: Russland 40,2% Kasachstan 15,4% China 15,2% Kanada 10,6% Brasilien 10,3% Fördermenge Deutschland: - t im Jahr 2007 Importmenge Deutschland: 54 t im Jahr 2007 Abraum: k.A.t/t Fördermenge weltweit: 2300000t/a Reserven: k.A.t Statische Reichweite: k.A.a
Kalksandstein-Herstellung: Verarbeitung der Rohstoffe zu gebrauchsfertigen Kalksandsteinen. Dazu werden die in Silos vorgehaltenen Rohstoffe (vorwiegend Kalk und Sand) in einem Verhältnis Kalk:Sand 1:12 intensiv miteinander gemischt und in die Reaktionsbehälter geleitet. Im Reaktionsbehälter löscht der Branntkalk nach Wasserzugabe zu Kalkhydrat ab. Wenn nötig wird das Mischgut im Nachmischer auf Preßfeuchte gebracht. In den Pressen werden die Steinrohlinge geformt. Im Anschluß werden die Rohlinge unter Sattdamdfdruck ca. 4 bis 8 Stunden bei Temperaturen zwischen 160 und 220°C im Autoklaven gehärtet. Dabei wird die Kieselsäure auf der Oberfläche der Steine angelöst und bildet dann mit dem Kalkhydrat eine kristalline Bindemittelphase, die auf die Sandkörner aufwächst und sie fest miteinander verzahnt. Nach einer Abkühlung sind die Kalksandsteine gebrauchsfertig (vgl. #2). Die in dieser Bilanzierung verwendeten Daten spiegeln die Situation in der Bundesrepublik in den Jahren 1993 und 1994 wider. Der Datensatz ist nahezu vollständig und umfaßt alle in dieser Studie betrachteten Parameter. Er entstammt einer mit dem Umweltbundesamt (UBA) und dem Normenausschuß für Grundlagen im Umweltschutz (NAGUS) abgestimmten Ökobilanz des Bundesverbandes der Kalksandsteinindustrie e.V.. 1993 wurden in 151 Produktionsstätten 4,8 Mrd. Vol-NF Kalksandsteine und im Jahr 1994 in 158 Produktionsstätten 5,95 Mrd. NF Kalksandsteine hergestellt (Eden 1996). Dies entspricht 1993 einer Produktionsmasse von 14,41 Mio. t und 1994 von 17,87 Mio. t Kalksandstein . Dabei liegen der endgültigen Bilanzierung die Produktionsdaten von 74 von derzeit 162 existierenden Kalksandstein-Werken zugrunde. Aus den Daten der 74 Werke wurden, gewichtet nach der jeweiligen Produktionsmenge, in #1 Mittelwerte berechnet. Die Daten können als zuverlässig und statistisch abgesichert angesehen werden. Allerdings muß darauf hingewiesen werden, daß in Einzelfällen große Abweichungen von den verwendeten Mittelwerten auftreten können (s.u.). Genese der Kennziffern Massenbilanz: Hauptbestandteile des Kalksandsteins sind erdfeuchter Sand und Branntalk. Hinzu kommen eine Reihe von Zuschlagsstoffen wie Steinmehl (in GEMIS wurde hierfür Kalksteinmehl angesetzt). Der quantifizierte Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandsteins ist der folgenden Tabelle zu entnehmen. Tab.: Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandstein (#1) Rohstoffe Masse in kg/t Kalksandstein Quarzsand (erdfeucht) 948 Branntkalk 86 Zuschlagsstoffe (Steinmehl) 33 Summe 1067 Die in dieser Studie verwendeten Daten stimmen in der Größenordnung gut mit denen in #3 überein. Da deren Quelle jedoch nicht vollständig nachvollziehbar ist, werden sie hier nicht weiter verwendet. Energiebedarf: Der Gesamtenergiebedarf der Herstellung des Kalksandsteins resultiert aus dem Strombedarf für die Förderbänder, die Mischaggregate, das Pressen und die Stapelanlage und dem thermischen Energiebedarf zur Dampferzeugung für die Härtung der Rohlinge, der den größten Teil des Energiebedarfs ausmacht. Innerhalb des Kalksandsteinwerkes besteht ein Strombedarf von ca. 35 MJ/t Kalksandstein. Der thermische Energiebedarf zum Härten beträgt ca. 370 MJ/t Produkt. Dieser wird durch Heizöl EL, Erdgas und Heizöl S gedeckt. Die Anteile der einzelnen Energieträger haben sich in den letzten Jahren stark verschoben. Dies wird in der folgenden Tabelle dargestellt. In dieser Studie werden die Anteile für das Jahr 1994 festgeschrieben. Tab.: Prozentualer Anteil des Einsatzes verschiedener Energieträger zur Dampferzeugung bei der Kalksandsteinherstellung 1992-94 (#2). Einsatz in % 1992 1993 1994 Heizöl S 16 11 4 Heizöl EL 54 54 56 Erdgas 30 35 40 Nach dem vorgestellten Aufteilungsschlüssel für 1994 ergibt sich folgender Primärenergiebedarf in den Kalkwerken zur Herstellung einer Tonne Kalksandstein: Tab.: Vergleich des durchschnittlichen Energieeinsatzes bei der Herstellung einer Tonne Kalksandsteins aufgeschlüsselt nach dem Einsatz fossiler Energieträger nach der Statistik und der Erhebung des Kalksandstein-Verbandes (#2). Energieträger Energieeinsatz nach Statistik in MJ/t KS Energieeinsatz nach Erhebung in MJ/t KS Heizöl EL(incl. Diesel) 206,64(16) 186(16) Erdgas 147,6 122 Heizöl S 14,76 61 Strom 35 35 Summe 404 404 Wie aus der Tabelle hervorgeht, spiegelt die Erhebung des Kalksandstein-Verbandes nicht den letzten Stand bei der Verschiebung der Nutzung emissionsärmerer Energieträger wider. Die unterschiedlichen Ergebnisse verdeutlichen aber auch, daß die Entwicklung bei der Verschiebung der Nutzung der Energieträger noch nicht abgeschlossen ist. Aus diesem Grunde werden im Sinne einer Fortschreibung in dieser Studie die Werte basierend auf der Aufteilung von 1994 für weitere Berechnungen verwendet. Bei den einzelnen Kalksandstein-Werken kann es hinsichtlich des Energiebedarfs zu nennenswerten Abweichungen vom Durchschnitt kommen. Die zehn am wenigsten Energie verbrauchenden Werke der Untersuchung kommen mit weniger als 65 % des durchschnittlichen Energiebedarfs aus. Dabei handelt es sich meist um neuere Werke, die über eine größere Härtekesselkapazität verfügen und Dampfsteuerungs- und Wärmetauschanlagen betreiben. Weiterhin nutzen sie die Wärmeenergie des anfallenden Härtekondensats (#1). Demgegenüber verbrauchen die zehn am energieintensivsten arbeitenden Werke gemittelt 134 % des durchschnittlichen Energieverbrauchs. Der Spitzenwert liegt bei 972 MJ/t Kalksandstein (#1). Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen neben den Emissionen der Energieerzeugung zur Dampferzeugung treten in dem bilanzierten Rahmen nicht auf. Heizöl EL, Heizöl S und Gas werden in industriellen Kesseln verbrannt. Diesel wird in Motoren verbrannt. Für den Strombedarf wird der Strom-Mix für ein lokales Niederspannungsnetz verrechnet (#1). Wasserinanspruchnahme: Wasser wird zur Aufbereitung der Rohstoffe sowohl im Mischer als auch - je nach Bedarf - im Nachmischer zugegeben. Durchschnittlich werden 0,225 m³/t Kalksandstein benötigt. Das Wasser wird zu zwei Dritteln aus eigenen Brunnen gefördert, zu 10% aus Oberflächengewässern und zu 25% aus der öffentlichen Trinkwasserversorgung (#1). Abwasserinhaltsstoffe: Von den durchschnittlichen 0,083 m³ Abwasser pro t Kalksandstein werden nach #1 mehr als die Hälfte versickert. Ca. ein Drittel wird indirekt über das kommunale Kanalnetz eingeleitet, während weitere 10 % direkt in Oberflächengewässer eingeleitet werden. Das Wasser ist nach #1 durchschnittlich mit einem CSB von 9,4 g/t Kalksandstein belastet. Für den BSB5 wird die Hälfte des CSB - also 4,7 g/t - angesetzt. Mit einer AOX-Belastung ist nicht zu rechnen. Ebenso wird die zusätzliche Stickstoff- und Phosphorbelastung gleich null gesetzt. Reststoffe: Die folgende Tabelle zeigt die pro Tonne Kalksandstein anfallenden Abfälle: Tab.: Abfälle bezogen auf eine Tonne produzierten Kalksandstein (#1). Abfallart Menge in kg/t KS Ölfilter 0,002 feste Betriebsmittel (verunreinigt) 0,008 Altöle 0,059 Ölabscheiderinhalte 0,0003 Ölbinder 0,037 Gewerblicher Restmüll 0,156 Summe 0,2623 Pro Tonne Kalksandstein fallen also ca. 0,26 kg Reststoffe an. Verschleiß der Preß- und Formwerkzeuge sowie Verpackungsmaterialien wurden nicht mitbilanziert. Produktionsabfälle in Form von Kalksandstein können im vollen Umfang in den Prozeß zurückgeführt werden. Kalksandsteine können nach dem Gebrauch auch einem stofflichen Recycling zugeführt werden. Der recycelte Kalksandstein hat eine etwas gröbere Struktur, so daß man streng genommen von einem Downcycling sprechen müßte. Der Einsatzzweck ist jedoch nur als Sichtmauerstein eingeschränkt (#3). Der Recyclingpfad wird aufgrund mangelnder Daten in dieser Studie nicht berücksichtigt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 105% Produkt: Baustoffe
Der Ressourcenschutz tritt neben dem bereits intensiv diskutierten und untersuchten Klimaschutz immer mehr in den Fokus der Umweltpolitik und des Umweltrechts. Unsere Ressourcennutzung hat ein Ausmaß erreicht, das nicht dauerhaft gehalten werden kann. Sie vermindert zunehmend die Fähigkeit unseres Planeten, die Lebensgrundlagen für Menschen, Tiere und Pflanzen zu generieren. Die steigende Ausbeutung und Nutzung von Rohstoffen verursacht über die gesamte Wertschöpfungskette - von der Gewinnung, über die Verarbeitung und Nutzung bis hin zur Entsorgung - massive Umweltbelastungen, die auch zu Problemen für die menschliche Gesundheit werden können.Da die Rechtsordnung weder in Deutschland noch in der Europäischen Union ein systematisches und ausgearbeitetes Ressourcenschutzrecht kennt, sondern nur in einigen Rechtsbereichen einzelne Fragen des Ressourcenschutzes behandelt, haben die Autoren im Auftrag des Umweltbundesamts vom September 2012 bis zum Oktober 2016 das Forschungsprojekt "Rechtliche Instrumente des allgemeinen Ressourcenschutzes" (FKZ 3711 18 102) durchgeführt. Dieses Buch stellt die wesentlichen Ergebnisse dar.Die Autoren untersuchen die Verankerung eines wirksamen Ressourcenschutzregimes im deutschen Recht. Davon ausgehend entwickeln sie eine Vision für ein allgemeines Ressourcenschutzrecht, konzipieren ein Stammgesetz für den Ressourcenschutz und erarbeiten konkrete Regelungsvorschläge in Bezug auf die Umsetzung von Ressourcenschutz in verschiedenen Rechtsbereichen. Untersucht werden ressourcenschutzrechtliche Anforderungen an die Gewinnung sowie die Verarbeitung und Verwendung von Rohstoffen (Raumordnungs-, Planungs-, Berg-, Anlagen- und Baurecht), an die Produktgestaltung (kreislaufwirtschaftsrechtliche Produktverantwortung und Abfallvermeidung), an die Berichterstattung von Unternehmen (Wertpapierbörsen, Risikobewertung und handelsrechtliche Offenlegung), an informatorische Instrumente (UVP, EMAS und weitere) sowie an die Selbstregulierung. Quelle: Forschungsbericht
Liebe Leser*innen, Deutschlands Konsum von Rohstoffen liegt weit über dem globalen Durchschnitt und belastet Klima und Umwelt. Mehr dazu in unserem frisch erschienenen „Ressourcenbericht für Deutschland 2022“ und in dieser Newsletter-Ausgabe. Außerdem berichten wir von der kürzlich zu Ende gegangenen Weltklimakonferenz und ziehen Bilanz zu den erreichten Fortschritten. Was Deutschlands Klimaziele angeht, werfen wir einen Blick auf den Verkehrssektor. Dieser droht, das durch das Bundes-Klimaschutzgesetz vorgegebene Treibhausgas-Minderungsziel das zweite Jahr in Folge zu verfehlen. Außerdem geht es in dieser Newsletterausgabe darum, warum das UBA innerorts Tempo 30 als Regelgeschwindigkeit empfiehlt und warum Deutschland mehr Tempo und Ambition beim Gewässerschutz braucht. Interessante Lektüre wünscht Ihre Pressestelle des Umweltbundesamtes Deutschlands Ressourcenverbrauch 30 Prozent über globalem Durchschnitt Durch Recycling werden Materialien im Kreislauf geführt und Primärrohstoffe eingespart. Quelle: Jan Malburg / Adobe Stock Deutschlands Konsum von Rohstoffen, wie Erdöl, Holz oder seltene Erden, ist von 2018 bis 2019 durch effizientere Nutzung leicht gesunken. Für das Jahr 2020 zeigen vorläufige Berechnungen ebenfalls ein leichtes Absinken, wohl auch beeinflusst durch die Corona-Pandemie. Insgesamt lag die Rohstoffinanspruchnahme in Deutschland im Jahr 2019 bei 1,3 Milliarden Tonnen. Damit blieb der Trend in den letzten 10 Jahren relativ konstant. Unser Konsum liegt jedoch noch immer rund 30 Prozent über dem globalen Durchschnitt. Jede*r Bundesbürger*in trägt statistisch einen „ökologischen Rucksack“ von 16 Tonnen konsumierter Rohstoffe und Materialien pro Jahr, etwa für Ernährung, Wohnen und Mobilität. Das zeigt der „Ressourcenbericht für Deutschland 2022“ des Umweltbundesamtes. Dies wirkt sich auch negativ auf die Klimabilanz aus: Rund 40 Prozent der deutschen Treibhausgasemissionen sind auf die Entnahme und erste Verarbeitung von Rohstoffen zurückzuführen. Zudem entstehen durch den Import von Produkten nach Deutschland und deren Rohstoffbedarf auch Umweltprobleme durch Wasser- und Flächenverbrauch in anderen Teilen der Welt. So betrug der deutsche Wasserfußabdruck im Jahr 2021 rund 201.318 Millionen Kubikmeter und der deutsche Flächenfußabdruck im Jahr 2018 rund 74 Millionen Hektar. Etwa die Hälfte der für den deutschen Konsum eingesetzten Rohstoffe stammt aus Ländern außerhalb der Europäischen Union. Die Rohstoffnutzung der Zukunft kann mit einer ambitionierten Rohstoffpolitik wesentlich nachhaltiger gestaltet werden. Bis zum Jahr 2030 ist in Deutschland ein Rückgang des Rohstoffkonsums um mehr als ein Drittel gegenüber 2019 möglich. Bis 2050 könnte der Rohstoffkonsum durch einen Mix aus Technologiewandel und Lebensstiländerungen von aktuell 16 Tonnen sogar auf 5,7 Tonnen pro Kopf reduziert werden. Enttäuschung bei Experten aus Dessau über Weltklimakonferenz UBA-Präsident Dirk Messner im MDR-Fernsehen über die Ergebnisse der Weltklimakonferenz Angeln ohne Blei - das sind die Alternativen Beim Angeln werden in der Regel Bleie benutzt, um weit auswerfen zu können und damit die Köder unter Wasser bleiben. Doch Blei ist giftig und manchmal bleibt das Angel-Gewicht ungewollt in Meer, See oder Fluss. Aber es gibt Alternativen. Radiobeitrag von NDR Info, unter anderem mit UBA-Expertin Stefanie Werner.
„Bioabfallsammlung macht Sinn!“ – diese Botschaft möchten die Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz (SenUMVK) und die Berliner Stadtreinigung (BSR) den Berliner*innen mit dem Start zweier Kampagnen vermitteln. Beide Kampagnen informieren die Berliner*innen darüber, wie die Verarbeitung des wichtigen Rohstoffes Biogut erfolgt, und warum es so sinnvoll ist, diesen vom übrigen Abfall konsequent zu trennen. Denn die über die Biotonne erfassten Abfälle verwertet die BSR nach der Sammlung zu klimafreundlichem Biogas und wertvollem Kompost. Ein wichtiger Beitrag zu Klima- und Ressourcenschutz. Allerdings gelangen nach wie vor noch zu viele organische Abfälle in die graue Tonne, obwohl sie in der Biogut-Tonne richtig aufgehoben wären. In der Biotonne wiederum landen noch zu viele Störstoffe, wie beispielsweise Steine und Kunststofftüten, die dort nicht hineingehören und die anschließende Verwertung erschweren. SenUMVK und BSR nehmen dies zum Anlass, hier gemeinsam weiter auf Aufklärung zu setzen. So zeigt die Senatsumweltverwaltung in ihrer Kampagne unter dem Slogan „Sparen mit der Biotonne“, welche Energiemengen durch die Verwertung organischer Abfälle gewonnen und wieviel Klimagase hierdurch vermieden werden können. Dazu wurde unter anderem eine sogenannte „Wundertüte“ entwickelt – eine biologisch abbaubare Papiertüte, die gleichermaßen als Informationsflyer und als Sammelgefäß für Bioabfälle dient. Diese „Wundertüte“ erhalten die Bürger*innen in den nächsten Monaten in gartenreichen Gebieten an die Restabfalltonne geheftet. Gleichzeitig erfolgen Aufklärungsaktionen an Informationsständen vor Supermärkten und auf Bezirksfesten. Die BSR führt im Rahmen ihrer eigenen Kampagne mit dem Titel „Was lange gärt, wird richtig gut“ ab Mitte März eine Postwurfsendung für rund 580.000 Haushalte durch. Die Berliner*innen erhalten hierbei Tipps zur Abfallvermeidung und zum Sammeln von Bioabfällen sowie zum generellen Trennen von Abfall. Mit enthalten ist auch ein spannendes Kreuzworträtsel rund um das Thema Biogut. Im weiteren Verlauf der BSR-Kampagne soll insbesondere das jüngere Publikum zudem mit einer breit gefächerten Online-Kommunikation angesprochen werden. Dr. Silke Karcher, Staatssekretärin für Umwelt und Klimaschutz : „In Zeiten von Energie- und Rohstoffknappheit ist es besonders wichtig, alle erneuerbaren Quellen zu nutzen. Würde jede*r Berliner*in jede Woche ein Kilogramm Biogut sammeln, könnte das daraus gewonnene Biogas den jährlichen Erdgasverbrauch von 4.700 Einfamilienhäusern ersetzen. Gleichzeitig sparen wir durch die Verwertung 24.000 Tonnen Klimagase ein. Das Potenzial korrekt entsorgter und verwerteter Bioabfälle ist also enorm.“ Stephanie Otto, Vorstandsvorsitzende der Berliner Stadtreinigung (BSR) : „Bereits heute stellen wir in unserer Vergärungsanlage in Ruhleben aus dem Biogut der Berliner Haushalte so viel Biogas her, dass wir damit mehr als die Hälfte unserer Müllfahrzeugflotte betreiben können. Das Potenzial von Biogut als klima- und ressourcenschonender Rohstoff ist aber noch nicht ausgeschöpft. Wir können und müssen mehr erreichen. Das geht nur, wenn wir die Biotonne plastikfrei halten. Auch bei Biogut ist eine korrekte Abfalltrennung entscheidend.“
In einem Verbundprojekt wurde die Intensivierung einer Biodieselproduktion verfolgt. Hier zeigten sich frühzeitig in der Prozessentwicklung die Vorteile einer mikroverfahrenstechnischen Prozessführung gegenüber einer Produktion im kontinuierlichen Rührkessel-Reaktor. Unter Einsatz von Altspeiseöl und superkritischen Reaktionsbedingungen konnte die Synthese von Biodiesel intensiviert werden. Gegenüber der konventionellen Syntheseführung mit langen Verweilzeiten der Reaktionskomponenten ergaben sich deutliche ökologische und sicherheitstechnische Vorteile. Diese Vorteile wurden mit Hilfe einer vergleichenden Ökobilanz quantifiziert. Durch die effiziente Verarbeitung von Abfallölen ohne aufwendige Vorbehandlungsschritte, die mit dem neu entwickelten Verfahren möglich wird, kann künftig eine Reduktion von Treibhausgasemissionen von bis zu 70 % im Vergleich zu einem industriell etablierten Prozess (moderate Prozessbedingungen und Verwendung von Sojaöl als Rohstoff) erwartet werden. Dies entspricht der Vermeidung von 860 t klimarelevanten Kohlendioxid-Äquivalenten je 1.000 t produziertem Biodiesel. Basierend auf diesen vielversprechenden Ergebnissen wurde eine erste Pilotanlage mit einem Durchsatz von 6 l/h Biodiesel in Alessandria, Italien, errichtet. Auch eine Bewertung der ökonomischen Effizienz des neu entwickelten Konzeptes im Vergleich zu den Ergebnissen anderer Studien wurde vorgenommen. Es zeigte sich, dass zum damaligen Entwicklungsstand der Pilotanlage ein konventioneller (heterogen katalysierter) Prozess noch ökonomische Vorteile aufweist. Weitere Verbesserungen im Laufe der Entwicklungen und Maßstabsvergrößerung der Produktion waren jedoch zu erwarten.
Rohstoffnutzung und ihre Folgen Weltweit werden Jahr für Jahr mehr abiotische Rohstoffe aus der Natur entnommen. Sie werden zu Rohmaterial aufbereitet und verarbeitet, um den stetig steigenden Bedarf der Weltwirtschaft zu stillen. Dieser Trend verschärft globale Umweltprobleme wie den Klimawandel, die Bodendegradation oder den zunehmenden Verlust an biologischer Vielfalt vor allem in ökologisch sensiblen Gebieten. Umweltwirkungen der Rohstoffnutzung Rohstoffnutzung bezeichnet jeglichen Zugriff des Menschen auf Rohstoffe. Sie beginnt mit der Entnahme der Rohstoffe, geht weiter mit deren Aufbereitung zu Rohmaterialien und deren Veredelung und Verarbeitung zu Produkten. Schließlich folgen die Phasen der Produktnutzung und Entsorgung, bei der die im Abfall enthaltenen Rohstoffe möglichst zurückgewonnen und Stoffkreisläufe geschlossen werden. Die Umweltwirkungen der Rohstoffgewinnung, der Veredelung sowie der Rohstoffrückgewinnung lassen sich mit geeigneten Methoden den Rohstoffen zuordnen (Stichwort: „ökologische Rucksäcke“). Dies ist bei Produktherstellung und -nutzung nicht der Fall. Rohstoffe sind zwar Bestandteil der Produkte, doch die Umweltauswirkungen der Produktherstellungs- und Nutzungsphase beziehen sich auf das Produkt und nicht auf die Rohstoffe oder -materialien. Deshalb bezieht sich dieser Text zu den Umweltfolgen der Rohstoffnutzung ausschließlich auf die Entnahme und Aufbereitung der Rohstoffe zu Rohmaterialien sowie deren Veredelung. Umweltfolgen vor, während und nach dem Rohstoffabbau Der Mensch greift beim Abbau von Rohstoffen vielfältig in Natur und Umwelt ein. Bedeutsam sind vor allem Eingriffe in den Wasserhaushalt sowie in den Naturhaushalt und deren Auswirkungen auf konkurrierende Nutzungen durch den Menschen und die biologische Vielfalt. Es wird Energie verbraucht, Schadstoffe gelangen in Wasser, Boden und Luft. Wichtig ist dabei auch, wie mit Bergbauabfällen umgegangen wird. Die Umweltwirkungen der Rohstoffgewinnung treten über einen langen Zeitraum – dem Lebenszyklus des Rohstoffprojektes – auf. Erst wird eine Lagerstätte erkundet, dann erschlossen und meist über viele Jahre abgebaut. Die Rohstoffe werden zu Rohmaterialien aufbereitet und veredelt – wenn auch nicht notwendigerweise vor Ort. Am Ende wird die Lagerstätte geschlossen und es findet idealerweise eine Nachsorge statt. In jeder dieser Phasen treten unterschiedliche Umweltwirkungen auf. Beim Schritt von der Erkundungs- zur Erschließungs- und Betriebsphase steigen in der Regel die Umweltwirkungen deutlich. Erfolgen diese Tätigkeiten vorsorgeorientiert und findet eine effektive Nachsorge statt, nehmen die Umweltwirkungen während der Schließungs- und der Sanierungsphase in der Regel wieder ab. Eine erfolgreiche Nachsorge setzt ein funktionierendes Abfallmanagement in der Betriebsphase sowie die Festlegung konkreter Nachsorgeauflagen wie der Rekultivierung , der Standsicherheit und der Sanierung voraus. Diese Maßnahmen müssen bereits bei der Genehmigung des Bergbauprojekts festgelegt werden. Ausführliche Informationen am Beispiel des Erzbergbaus finden Sie hier .
UBA veröffentlicht Leitsätze für die Kreislaufwirtschaft Eine Nachhaltige Entwicklung ist ohne eine konsequente Kreislaufwirtschaft kaum vorstellbar. Die Abkehr von einer überwiegend linearen Wirtschaftsweise erfordert Weichenstellungen. Das UBA hat Leitsätze für Politik, Wirtschaft und Gesellschaft erarbeitet, die die Zielsetzungen, Gestaltungsräume, Handlungsmaßstäbe, Anforderungen und Erfolgsfaktoren einer Kreislaufwirtschaft systematisch darlegen. Der Belastungsdruck steigt Die Weltbevölkerung hat sich in den vergangenen fünf Jahrzehnten verdoppelt, die globale Rohstoffgewinnung hat sich verdreifacht. Bis 2060 drohen sich die Rohstoffbedarfe von derzeit rd. 90 Mrd. Tonnen auf bis zu 190 Mrd. Tonnen erneut drastisch zu erhöhen. Die Konkurrenz ist längst nicht mehr nur um Rohstoffe entbrannt, sondern um den Zugriff auf natürliche Ressourcen insgesamt: wie Böden, Flächen, sauberes Trinkwasser und intakte Ökosysteme. Nach Aussagen des International Resource Panels gehen etwa 50 % der klimaschädlichen Treibhausgasemissionen und 90 % des Biodiversitätsverlusts sowie des Wasserstresses auf die Gewinnung, Aufbereitung und Verarbeitung von Rohstoffen zurück. Die negativen Auswirkungen auf die natürliche Umwelt durch die gesamte Rohstoffwirtschaft und die daraus resultierenden Abfälle und Emissionen nehmen weiter zu. Unterdessen werden weltweit nur knapp 9 % des Rohstoffbedarfs durch ressourcenschonende Sekundärrohstoffe gedeckt. Kein „Weiter so“ mit der Linearwirtschaft Ein Umdenken findet langsam statt, um diesen Herausforderungen zu begegnen. So erhebt der European Green Deal, der die wesentlichen Entwicklungsziele der EU bis 2030 vorgibt, eine klimaneutrale Kreislaufwirtschaft zu einer tragenden Säule für eine Nachhaltige Entwicklung. Der neue „Aktionsplan für die Kreislaufwirtschaft - Für ein saubereres und wettbewerbsfähigeres Europa“ der Europäischen Kommission zielt auf eine stärker kreislauforientierte Wirtschaft, bei der es darum geht, den Wert von Produkten, Stoffen und Ressourcen innerhalb der Wirtschaft so lange wie möglich zu erhalten und gerade nicht zu verbrauchen sowie möglichst wenig Abfall zu erzeugen. Erklärtes Ziel des Aktionsplans ist es, den Fußabdruck im Hinblick auf den Ressourcenverbrauch absolut zu senken und hierzu den Anteil kreislauforientiert verwendeter Materialien in den kommenden zehn Jahren zu verdoppeln. Kreislaufwirtschaft, aber richtig Erforderlich hierfür ist ein systemischer Ansatz; über gesamte Wertschöpfungsketten und Produktlebenszyklen hinweg, mit einem Systemwandel des Wirtschaftssystems, das auf nachhaltigere Produktionsmuster und Produktpolitiken setzt. Diese Transformation zur Kreislaufwirtschaft und ihre politische Ausgestaltung geht weit über das hinaus, was mithilfe des deutschen Kreislaufwirtschaftsgesetzes bei der Erzeugung und Bewirtschaftung von Abfällen geregelt werden kann. Im Sinne einer nachhaltigen Kreislaufwirtschaft werden weitere Ressorts, Wirtschafts- und Rechtsbereiche umfasst. Der erweiterte Fokus schlägt sich teilweise bereits in der Novellierung des Kreislaufwirtschaftsgesetzes (2020) unter Berücksichtigung der neu gefassten EU-Abfallrahmenrichtlinie (2018) nieder. Doch in den nächsten Jahren gilt es, den systemischen Ansatz der Kreislaufwirtschaft auszugestalten und zu konkretisieren, damit auch die übergreifenden Ziele wie die Schonung der natürlichen Ressourcen, der Schutz der menschlichen Gesundheit sowie eine nachhaltigere Rohstoffversorgung erreicht werden. Leitsätze geben Orientierung Das Umweltbundesamt hat daher neun Leitsätze erarbeitet, die ein gemeinsames Verständnis für die Kreislaufwirtschaft, deren zentrale Begriffe, Prinzipien, Ziele, Maßstäbe und die wichtigsten Handlungsansätze schaffen sollen. Eingebettet darin ist die Abfall- und Sekundärrohstoffwirtschaft als wesentlicher Funktionsbereich für eine Kreislaufwirtschaft. Daneben finden auch übergreifende Ansätze wie Vermeidung, Design oder Abwägungen zum Umgang mit Schadstoffen ihren Platz. Die Leitsätze werden jeweils ausführlich erläutert, Begriffe und Ansatzpunkte systematisch erklärt. Außerdem werden ausgehend von den Zielen der Kreislaufwirtschaft Maßstäbe gesetzt, Bewertungen getroffen und die Verknüpfungen der Leitsätze untereinander aufgezeigt. Die Leitsätze sollen eine Ordnung für die Kreislaufwirtschaft schaffen und eine verlässliche Orientierung für deren erfolgreiche Ausgestaltung geben.
Rohstoffproduktivität Die Rohstoffproduktivität stieg in Deutschland zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war es, die Rohstoffproduktivität bis 2020 gegenüber 1994 zu verdoppeln. Dieses Ziel wurde deutlich verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird der weitentwickelte Indikator „Gesamtrohstoffproduktivität“ abgebildet. Entwicklung der Rohstoffproduktivität Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt. Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele: Die Rohstoffproduktivität nahm zwischen den Jahren 2008 und 2009 um ca. 4 % zu. In dieser Zeit der Wirtschafts- und Finanzkrise verringerten sich sowohl das BIP als auch der abiotische Direkte Materialeinsatz. Da der Materialeinsatz stärker sank als das BIP, stieg die Rohstoffproduktivität. Der Hauptgrund dafür waren die gesunkenen Einfuhren. Vom Jahr 2010 auf das Jahr 2011 sank die Rohstoffproduktivität um rund 3,6 %. Der Grund dafür war, dass in diesem Zeitraum der Anstieg des Materialeinsatzes das wirtschaftliche Wachstum überkompensierte. Von 2011 bis 2019 (vor-Corona-Jahr) ist die Rohstoffproduktivität wieder um knapp 28 % angestiegen: Das BIP stieg um etwa 15 %, der Materialeinsatz sank um ca. 5 %. Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms ( ProgRess ) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020. Indikator "Rohstoffproduktivität" Der Indikator „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch DMI im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum. Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz Zur Berechnung der Rohstoffproduktivität wird der Indikator „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ ( DMI ) bezeichnet. Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, Halbwaren und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators. Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen. Entwicklung des abiotischen Direkten Materialeinsatzes Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994. Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 22 %. Im Jahr 2021 stieg der Direkte Materialeinsatz aufgrund der zunehmenden wirtschaftlichen Aktivitäten mit 1.217 Mio. t. wieder an (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“). Komponenten des abiotischen Direkten Materialeinsatzes Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2021 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2021 um 395 Millionen Tonnen (– 35 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 97 Mio. t an (+ 25%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 40 % im Jahre 2021. Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2021 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“): Die inländische Gewinnung von sonstigen Mineralien wie z.B. mineralischen Baurohstoffen sank um 30 % oder 250 Millionen Tonnen (Mio. t). Die Gewinnung von Energieträgern im Inland nahm um 52 % (145 Mio. t) ab. Darin spiegelt sich der Rückgang der Braunkohle- und Steinkohleförderung wider. Im Gegenzug wurden rund 77 Mio. t (33 %) mehr an Energieträgern und deren Erzeugnissen eingeführt. Auch die Importe von Erzen und ihren Erzeugnissen stiegen deutlich um 42 % (37 Mio. t) an. Dabei handelt es sich überwiegend um Metallwaren. Erfassung der indirekten Importe Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. Der Indikator Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden. Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2021 die Einfuhren an überwiegend abiotischen Fertigwaren um 116 % deutlich stärker zu, als die von Halbwaren . Deren Importe gingen sogar leicht zurück. Die von Rohstoffen erhöhten sich um 17 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz. Die starken Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert. Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in Rohstoffäquivalente abbilden – wie etwa beim Indikator „Rohstoffverbrauch“ (engl. „Raw Material Input“, RMI ). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird. Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMI abiot ) um mehr als 6 %. Der DMI abiot , der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um knapp 2 % (siehe Abb. „Rohstoffproduktivität“). Schaubild: Stoffstromindikatoren Quelle: Umweltbundesamt Rohstoffproduktivität Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Bedeutung der Biomasse nimmt zu Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass Biomasse bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden. Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen. Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität Mit Verabschiedung des 2. Deutschen Ressourceneffizienzprogramms (ProgRess II) und der Neuauflage der Deutschen Nachhaltigkeitsstrategie wurde dem Indikator „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen Primärrohstoffeinsatz ( Rohstoffäquivalente ). Die Gesamtrohstoffproduktivität wird seit Veröffentlichung des Deutschen Ressourceneffizienzprogramms III ausschließlich berichtet. Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Von 2010 bis 2021 nahm die Gesamtrohstoffproduktivität um 15 % zu. Das durchschnittliche Wachstum lag demnach bei etwa 1,3 % pro Jahr und damit unterhalb des Ziels der Deutschen Nachhaltigkeitsstrategie. Der Indikator wird hier ausführlich vorgestellt.
Rechtliche Instrumente des allgemeinen Ressourcenschutzes Die Rechtsordnung kennt bislang weder in Deutschland noch auf europäischer Ebene ein systematisches und ausdifferenziertes Ressourcenschutzrecht. Diese Fragen werden vielmehr nur in einigen Rechtsbereichen punktuell behandelt. Im Auftrag des Umweltbundesamtes wurde deshalb untersucht, wie ein wirksames Ressourcenschutzregime im deutschen Recht verankert werden könnte. Der Bericht stellt die Vision der Autoren für ein allgemeines Ressourcenschutzrecht des Bundes vor. Hierfür wird ein kombinierter Ansatz verfolgt, nämlich die Konzeption eines Stammgesetzes für den Ressourcenschutz sowie die Entwicklung konkreter Regelungsvorschläge für die Umsetzung des Ressourcenschutzes in verschiedenen Rechtsbereichen. Untersucht wurde die bestehende Rechtsordnung, um die wichtigsten Bereiche zu identifizieren und zu bewerten, die bisher schon Aspekte des Ressourcenschutzes regeln. Dabei wurden Anknüpfungspunkte, um ressourcenschutzrechtliche Anforderungen an die Gewinnung sowie die Verarbeitung und Verwendung von Rohstoffen (Raumordnungs-, Planungs-, Berg-, Anlagen- und Baurecht), an die Produktgestaltung (kreislaufwirtschaftsrechtliche Produktverantwortung und Abfallvermeidung), an die Berichterstattung von Unternehmen (Wertpapierbörsen, Risikobewertung und handelsrechtliche Offenlegung), an informatorische Instrumente ( UVP , EMAS , usw.) sowie an die freiwillige Selbstregulierung der Unternehmen in den jeweiligen Rechtsrahmen zu integrieren, weiterentwickelt. Zudem wurden Vorschläge erarbeitet, um Regelungslücken in einzelnen Rechtsbereichen zu schließen. Die Autoren prüften drei geeignete methodische Ansätze zur Ausgestaltung eines allgemeinen Ressourcenschutzgesetzes und befürworten ein Gesetzeskonzept, dass die wesentlichen Ziele und Grundsätze des Ressourcenschutzes sowie eine allgemeine Pflicht zum sparsamen Umgang mit Ressourcen regelt. Es könnte darüber hinaus auch die wesentlichen Begriffe des Ressourcenschutzes einheitlich für die gesamte Rechtsordnung definieren. Ein solches Rahmenwerk könnte eine wichtige Signalwirkung für den Ressourcenschutz als staatlich verbindliche Aufgabe entfalten und als Orientierungs- und Auslegungshilfe für die spezifischen Anforderungen des Ressourcenschutzes in den jeweiligen Fachgesetzen dienen. Die Ergebnisse der Studie können für die Umsetzung und Fortschreibung des Ressourceneffizienzprogramms der Bundesregierung (ProgRess) und der nationalen Nachhaltigkeitsstrategie genutzt werden. Das Umweltbundesamt wird auch weiterhin auf dem immer wichtiger werdenden Feld des Ressourcenschutzes und insbesondere des Ressourcenschutzrechts forschen und der Bundesregierung Handlungsoptionen vorschlagen.
Origin | Count |
---|---|
Bund | 120 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 105 |
Text | 13 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 15 |
offen | 105 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 123 |
Englisch | 6 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 1 |
Datei | 3 |
Dokument | 6 |
Keine | 63 |
Webseite | 56 |
Topic | Count |
---|---|
Boden | 123 |
Lebewesen & Lebensräume | 92 |
Luft | 55 |
Mensch & Umwelt | 123 |
Wasser | 37 |
Weitere | 121 |