Ziel des Teilprojekts in Zusammenarbeit mit den Partnern ist Design, Fertigung und Test eines 'HTS retrofit Rotors' für einen mid-speed Generator für die Windkraft. Dabei unterstützt das KIT ITEP in mehreren Arbeitspaketen mit der besonderen Expertise in Hochtemperatursupraleitern (HTS), in Kryotechnologie und im Design von HTS-basierten rotierenden Maschinen.
Im Projekt SupraGenSys 1 wurde ein vollsupraleitend ausgeführter und direkt angetriebener Generator für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung entworfen und optimiert. In diesem Projekt sind bereits wesentliche Ergebnisse erzielt worden. In diesem Projekt zeigte sich der Generator bereits mit beeindruckenden Kennzahlen und verspricht durch Absenkung der Stromgestehungskosten ein wesentlicher Fortschritt für den Ausbau der Windenergie zu werden. In dem Folgeprojekt SupraGenSys 2 soll ein Demonstrationsgenerator ( DG ) konstruiert und gefertigt werden. Die Projektpartner übernehmen die Berechnung des Generators, die Konstruktion des Generators und der Einzelteile, sowie die Materialbeschaffung. Die Krämer Energietechnik GmbH & Co. KG übernimmt die Konstruktion, Materialbeschaffung und Fertigung aller erforderlichen Vorrichtungen. Die Fertigung der HTS-Spulen und der geblechten Kerne sowie die Montage von Rotor, Stator und Kyrostat wird ebenfalls bei Krämer erfolgen. Die Prüfung der tiefgekühlten Spulen wird mit Unterstützung des KIT bei Krämer durchgeführt. Anschließend erfolgt die Endmontage des Generators durch Krämer bei Fraunhofer IEE in Kassel.
In SupraGenSys 2 soll der Demonstrator auf Basis eines optimierten 10 MW Voll-HTS (Hochtemperatur-Supraleitung) Generators entwickelt werden. Dafür sind umfangreiche Berechnungen, sowie der Entwurf und die Konstruktion der entsprechenden Teilsysteme notwendig, bis letztlich alles im Demonstrator zusammenkommt und das Konzept eines Voll-HTS Generators geprüft und erprobt werden kann. Dafür ist eine enge Zusammenarbeit des Konsortiums notwendig, welches sich bereits in SupraGenSys bewähren konnte und für SupraGenSys 2 auf Grund des Potentials erweitert wurde. Der Beitrag von ProFluxx fokussiert auf die Konstruktion des Demonstrators. ProFluxx hat langjährige Erfahrungen in der Konstruktion von elektrischen Maschinen insbesondere Synchrongeneratoren. Hierbei liegt der Schwerpunkt im Bereich von 2 MVA (1,6 MW) bis 20 MVA (16 MW) und deckt somit den Zielleistungsbereich des 10 MW Voll-HTS Generators ab. ProFluxx ist daher mit der Auslegung der sogenannten Passivteile (Gehäuse, Lagerung, etc.) für die Zielgröße vertraut und wird entsprechende Konzepte auf Demonstratorgröße entwickeln. Zusammen mit den Projektpartnern wird ProFluxx diese Konzepte unter Berücksichtigung der späteren Scale up activity bewerten und ein Konzept auswählen, das dann detailliert wird und letztendlich gefertigt wird. Ein bedeutender Aspekt bei der Konzept Bewertung ist das Verständnis der Neuartigkeit der sogenannten Aktivteile (Kryostate, HTS Wicklungen und Blechpakete für Stator und Rotor).
Zielsetzung: In diesem Forschungsvorhaben soll ein neuartiges, recyceltes Aktivmaterial aus einer Stahllegierung für elektrische Maschinen (EMn) mithilfe eines innovativen, nachhaltigen Herstellungsverfahrens entwickelt werden. Die Grundidee des Projekts besteht darin, eine Recyclingroute für Blechpakete aus ausgemusterten Statoren und Rotoren von EMn sowie für den bei der Herstellung neuer Blechpakete anfallenden Blechschrott zu etablieren. Diese neue Recyclingroute zeichnet sich dadurch aus, dass die für neue EMn benötigten Statoren und Rotoren durch das Verpressen von Metallspänen hergestellt werden – anstelle des üblichen Weges über Verschrottung, Einschmelzen, Stranggießen sowie anschließendes Warm- und Kaltwalzen. Die Antragsteller verfolgen das Konzept, sämtlichen Schrott zu zerkleinern, die entstehenden Späne chemisch zu beschichten und anschließend durch ein Umformverfahren in die finale Geometrie von Stator- und/oder Rotorbauteilen zu verpressen. Das gepresste Bauteil kann dann als Aktivmaterial oder als Teil davon, z.?B. in einem EM oder in Transformatoren, eingesetzt werden. Fazit: Das gepresste Bauteil kann anschließend als Aktivmaterial oder als Teil davon verwendet werden, z.?B. in einer elektrischen Maschine (EM) oder in Transformatoren. Der daraus resultierende neuartige Werkstoff „Compacted Chip Magnetic Composite“ (CCMC) besteht aus recycelten, isolierten Blechspänen und ähnelt damit den heute bekannten weichmagnetischen Pulververbundwerkstoffen (SMC – Soft Magnetic Composites). Zur Validierung dieser Idee wird der Einfluss verschiedener Spangeometrien, deren Isolierung sowie weiterer Prozess- und Systemparameter im Herstellungsprozess untersucht. Die Ergebnisse dieser Forschung sollen dazu beitragen, den Einsatz von recyceltem Blechschrott in der Elektromobilität und anderen Anwendungen (z.?B. Transformatoren und/oder andere elektrische Maschinen zur Magnetfeldinduktion) zu verbessern und die Nachhaltigkeit von EMn zu erhöhen. Gelingt es, den Energiebedarf für das Recycling von EMn deutlich zu senken, kann dies einen wesentlichen Beitrag zur Reduzierung des CO2-Fußabdrucks zukünftiger elektrischer Maschinen leisten. Die in den Kreislauf zurückgeführten Motorkomponenten helfen dabei, den Verbrauch nicht erneuerbarer Rohstoffe sowie den Energiebedarf, die CO2-Emissionen und den Wasserverbrauch zu verringern.
Das Vorhaben baut auf die im Projekt SupraGenSys (Förderkennzeichen 03EE3010B) erarbeiteten Ergebnisse zum Entwurf und zur Optimierung eines vollsupraleitend ausgeführten und direkt angetriebenen Generators für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung auf. Die sich abzeichnende Verringerung der Stromgestehungskosten spielt eine wesentliche Rolle und verspricht den Ausbau der Windenergienutzung zu beschleunigen. Bisher durchgeführte Berechnungen berücksichtigen komplexe Systeme und deren Abhängigkeiten voneinander. Daraus ergibt sich die Wichtigkeit eines 'Proof-of-Concept', um anhand experimenteller Untersuchungen an einem Demonstrationsgenerator die ökonomische und technische Sinnhaftigkeit zu bestätigen und nachzuweisen, dass die Realität durch die Berechnungsmodelle hinreichend gut abgebildet wird. So kann das Vertrauen der Industrie in diese vielversprechende Technologie gestärkt werden. Ziel des Vorhabens ist somit die Entwicklung und der Aufbau eines 250-kW-Demonstrationsgenerators im Labor auf Basis des optimierten 10-MW-Voll-HTS-Generators. Mit Hilfe dieser Maschine werden die in SupraGenSys erarbeiteten Ergebnisse validiert und die entwickelten Berechnungsroutinen überprüft. Die Siemens AG trägt innerhalb des Konsortiums im Rahmen ihres Teilvorhabens zum Konzept und zum konzeptionellen Design des Demonstrationsgenerators bei. Besonderes Augenmerk gilt dabei der Untersuchung und Optimierung von Wechselstromverlusten in den supraleitenden Spulen von Rotor und Stator des neuartigen Generators. Die langjährige Erfahrung bei der Entwicklung von Elektromaschinen mit supraleitenden Rotorwicklungen fließt in die elektromagnetische Auslegung des 250-kW-Voll-HTS-Generators ein. Schließlich werden die Testergebnisse auf einen Multi-MW-Generatorentwurf übertragen.
Vorhabenbeschreibung AP 1.1b: Die heutige Vorgehensweise der industriellen aerodynamischen und strukturmechanischen Turbomaschinen Schaufel-Auslegung ist disziplinär und sequenziell organisiert. Im Rahmen des Vorhabens soll dies durch interdisziplinäre Prozessketten und automatisierte Optimierungsstrategien abgelöst werden. Durch eine zielgerichtete Nutzung von Methoden aus dem Bereich Maschinelles Lernen (ML) und künstliche Intelligenz (KI) werden datengetriebene Modelle für die physikalisch umfassende digitale Modellierung bereitgestellt. Vorhabenbeschreibung AP 1.2: Mit dem Harmonic-Balance-Verfahren steht dem DLR ein hochwertiges Frequenzbereichsverfahren für instationäre Strömungssimulationen zur Verfügung, das deutlich effizienter als konventionelle, instationäre Zeitbereichsverfahren (URANS) bei akzeptablem Genauigkeitsverlust ist. Aufgrund sekundärer, instationärer Effekte, deren physikalische Frequenzen nicht Teil des aufgelösten Spektrums sind, konvergieren bis zu einem Drittel der Flatter-Simulationen mit Harmonic Balance nicht. Auslöser sind gerade in den aeroelastischen Bewertungspunkten auftretende strömungsinduzierte Effekte wie Stoß-Grenzschicht-Wechselwirkungen und offene Ablösungen. Vorhabenbeschreibung AP3.1: Das Arbeitspaket teilt sich in zwei Bereiche auf, die jeweils der Untersuchung des entstehenden Wärmeeintrags und des Verschleißes, ausgelöst durch Anstreifen zwischen Bürstendichtung und Rotor, gewidmet sind. Es wird ein Modell zur Beschreibung des Verschleißes erstellt und mit den am DLR erhobenen Versuchsdaten verbessert und validiert. Der beim Anstreifen entstehende Wärmeeintrag wird bestimmt. Die Erkenntnisse sind für die Ertüchtigung der Bürstendichtung als Inner Air Seal essentiell, um den Verschleiß im Betrieb sowie Wärmeeintrag in den Rotor beschreiben zu können.
Die maximale Rotorgröße moderner Wind Energie Anlagen (WEA) wird vor allem durch die Festigkeit der verwendeten Materialien begrenzt. Mit Anwachsen der Rotorgröße und der von Wind überstrichenen Fläche steigen auch die Schwankungen der Windgeschwindigkeit und die resultierenden aerodynamischen Lasten am Rotor, was eine stärkere Materialermüdung verursacht. Eine vielversprechende Möglichkeit zur Verminderung dieser Lasten besteht in der Implementierung von Elementen zur aktiven Strömungskontrolle am Rotor. Das Ziel dieses Forschungsprojektes ist die Entwicklung einer vielseitigen und robusten aero-elastischen Simulationssoftware zur realistischen Bewertung der Leistungsfähigkeit verschiedener Methoden zur Strömungskontrolle. Die Software wird im Rahmen der Partnerprojekte PP2 und PP3 validiert und anschließend angewendet um das Konzept zur Strömungskontrolle aus PP5 zu untersuchen. Die in der Simulation verwendeten instationären Anströmbedingungen werden in PP6 charakterisiert. Der Strömungslöser basiert auf dem Panel Verfahren, welches mit einem Programm zur Strukturberechnung gekoppelt wird. Schließlich wird das Potential von verschiedenen Elementen zur Strömungskontrolle im rotierenden Rotorsystem bei transienter dreidimensionaler Anströmung untersucht. Zusätzlich werden verschiedene Kontrollalgorithmen verglichen. Die im Rahmen dieses Projekts entstehende Software wird anschließend der Öffentlichkeit zugänglich gemacht um den Wissenstransfer aus der Forschung in die Industrie zu unterstützen.
| Origin | Count |
|---|---|
| Bund | 383 |
| Land | 26 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 369 |
| Text | 20 |
| Umweltprüfung | 11 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 34 |
| offen | 368 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 387 |
| Englisch | 63 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 3 |
| Datei | 2 |
| Dokument | 14 |
| Keine | 187 |
| Webdienst | 3 |
| Webseite | 205 |
| Topic | Count |
|---|---|
| Boden | 182 |
| Lebewesen und Lebensräume | 169 |
| Luft | 247 |
| Mensch und Umwelt | 406 |
| Wasser | 151 |
| Weitere | 400 |