Ziel des Projektes ist die Entwicklung von fortschrittlichen Modellen zur numerischen Darstellung des Regelsystems, sowie die Erprobung neuer Pitchregelungskonzepte. Ferner ist die Belastungsmessung der Pitchantriebe unter realitätsnahen Bedingungen vorgesehen, um z.B. den Einfluss von Lagerreibung sowie Verzahnungsgeometrie besser erfassen zu können. Auch die Erprobung neuer Pitch Antriebskonzepte wie z. B. spielarme DC-Pitchantriebe kann durchgeführt werden.
Vorhabenbeschreibung AP 1.1b: Die heutige Vorgehensweise der industriellen aerodynamischen und strukturmechanischen Turbomaschinen Schaufel-Auslegung ist disziplinär und sequenziell organisiert. Im Rahmen des Vorhabens soll dies durch interdisziplinäre Prozessketten und automatisierte Optimierungsstrategien abgelöst werden. Durch eine zielgerichtete Nutzung von Methoden aus dem Bereich Maschinelles Lernen (ML) und künstliche Intelligenz (KI) werden datengetriebene Modelle für die physikalisch umfassende digitale Modellierung bereitgestellt. Vorhabenbeschreibung AP 1.2: Mit dem Harmonic-Balance-Verfahren steht dem DLR ein hochwertiges Frequenzbereichsverfahren für instationäre Strömungssimulationen zur Verfügung, das deutlich effizienter als konventionelle, instationäre Zeitbereichsverfahren (URANS) bei akzeptablem Genauigkeitsverlust ist. Aufgrund sekundärer, instationärer Effekte, deren physikalische Frequenzen nicht Teil des aufgelösten Spektrums sind, konvergieren bis zu einem Drittel der Flatter-Simulationen mit Harmonic Balance nicht. Auslöser sind gerade in den aeroelastischen Bewertungspunkten auftretende strömungsinduzierte Effekte wie Stoß-Grenzschicht-Wechselwirkungen und offene Ablösungen. Vorhabenbeschreibung AP3.1: Das Arbeitspaket teilt sich in zwei Bereiche auf, die jeweils der Untersuchung des entstehenden Wärmeeintrags und des Verschleißes, ausgelöst durch Anstreifen zwischen Bürstendichtung und Rotor, gewidmet sind. Es wird ein Modell zur Beschreibung des Verschleißes erstellt und mit den am DLR erhobenen Versuchsdaten verbessert und validiert. Der beim Anstreifen entstehende Wärmeeintrag wird bestimmt. Die Erkenntnisse sind für die Ertüchtigung der Bürstendichtung als Inner Air Seal essentiell, um den Verschleiß im Betrieb sowie Wärmeeintrag in den Rotor beschreiben zu können.
Die wesentlichen Ziele des Teilvorhaben von Flender sind, die Erfahrungen mit konventionellen Windkraftantriebsträngen in das Design eines supraleitenden Rotors einzubringen und den Prototypen dieses neuartigen Getriebegenerators realitätsnah und umfänglich zu testen. Flender liefert seinen Beitrag durch die Bereitstellung und Verwendung eines Getriebegenerators mit innovativem ölgekühlten Hochstrom-Stator. Ferner werden die weitreichenden Erfahrungen von Flender auf dem Gebiet der Windkraftgetriebe und Windkraftgeneratoren in die Entwicklung dieses Getriebegenerators mit HTS-Technologie einfließen. Im Speziellen verfügt Flender über Expertise im Rotordesign mit großen Durchmessern und hohen Umfangsgeschwindigkeiten, im Bereich der Lagerung, der Drehübertragung von elektrischen Größen auf den Rotor und dem Einsatz von Kunststoffen unter Extrembelastungen. In dem Vorhaben wird Flender den bereitgestellten Getriebegenerator an den neuartigen HTS-Rotor anpassen, der von dem Konsortium gefertigte HTS-Rotor wird in dem Generator verbaut und ein Teststand für die Lastprüfung des Generators wird vorbereitet. Abschließend wird Flender den Generator unter Leerlauf und Last vermessen und alle wesentlichen Maschinenparameter korrekt erfassen. Dies wird einen Abgleich mit den elektromagnetischen, elektrischen und mechanischen Modellen aus den anderen Teilvorhaben ermöglichen.
Um die Energieausbeute zu erhöhen wurden in den vergangenen Jahren Windenergieanlagen mit zunehmend größerem Rotordurchmesser entwickelt. Eine weitere signifikante Vergrößerung der Rotoren erfordert die Entwicklung neuer Konzepte und Technologien, um einen überproportionalen Anstieg von Gewicht und Herstellungskosten zu vermeiden und die Energie-Erzeugungskosten zu senken. Das gemeinsame Ziel des Forschungsschwerpunktes besteht in der Entwicklung und Bewertung innovativer Konzepte zur Lastenkontrolle. Im beantragten Teilvorhaben soll eine hochgenaue CFD-basierte Berechnungskette weiterentwickelt und zur Berechnung der instationären Lasten einer Windenergieanlage mit bzw. ohne aktivierter Lastenkontrolle angewendet werden. Dabei soll eine realitätsnahe atmosphärische Zuströmung mit zeitlich aufgelöster Turbulenz betrachtet werden. Die Komplexität der betrachteten Konfiguration sowie der Zuströmung wird dabei sukzessive erhöht, um spezifische Einflüsse gezielt untersuchen zu können, Vergleiche mit Windkanalversuchen der Univ. Oldenburg und der TU Darmstadt zu ermöglichen und schließlich Daten zur Verbesserung vereinfachter Berechnungsverfahren der TU Berlin und der TU Darmstadt zu liefern. Da sich die Windkanalversuche nur im Modellmaßstab durchführen lassen wird das entwickelte numerische Verfahren zur Bewertung der Wirksamkeit des Lastenkontrollkonzepts für eine generische Anlage im Original-Maßstab unter atmosphärischen Bedingungen genutzt.
Das Forschungsvorhaben beinhaltet zwei aufeinander abgestimmte Einzelaufgaben zur Minderung des Rotorlaerms sowie des vom Rotor induzierten Innenlaerms. Hubschrauberrotorlaerm: Es soll ein realistisches Vorhersageverfahren fuer den Hubschrauberrotorlaerm entwickelt werden mit dem Ziel, schon im Entwurfstadium des Rotorsystems dessen Laermemission einer objektiven und subjektiven Beurteilung zugaenglich zu machen, um auf diese Weise laermarme Konfigurationen zu entwickeln. Zur Erreichung dieses Ziels ist der Einfluss einer Reihe noch unbekannter aeroakustischer Quellmechanismen zu klaeren, wozu eine genauere Kenntnis der instationaeren, fluktuierenden Druckverteilung auf den Rotorblaettern notwendig ist. Hubschrauberkabineninnenlaerm: Zur Laermminderung in der Kabine wird eine Reduzierung des vom Rotor induzierten Laerms bereits an der Quelle und an den Uebertragungswegen angestrebt, wozu ein analytisches Modell zur Bestimmung der Uebertragungsfunktion ins Kabineninnere bei Erregung durch Rotornahfeld- und -abstrom entwickelt werden soll. Die einzelnen Entwicklungsschritte der Laermvorhersageverfahren werden an geeigneten Versuchstraegern experimentell ueberprueft.
Grüner surfen: Bewusste Gerätenutzung und klimafreundliche Anbieter Wie Sie das Internet umweltfreundlicher nutzen können Nutzen Sie Ihre Hardware so lange wie möglich. Achten Sie beim Neukauf auf langlebige und energieeffiziente Geräte für den Internetzugang (Computer, Notebook, Router). Surfen Sie bevorzugt über WLAN oder LAN statt über Mobilfunk. Wählen Sie beim Videostreaming eine geringe Bildauflösung. Schalten Sie Computer und Router/WLAN aus, wenn Sie sie nicht brauchen. Reduzieren Sie Ihr Datenvolumen: Versenden Sie Links statt großer Dateien, reduzieren Sie die Auflösung von Fotos, die Sie verschicken oder online stellen, kündigen Sie inaktive Accounts und Newsletter, die Sie nicht lesen. Gewusst wie Ohne Strom kein Internet: PC, Notebook, Smartphone, Tablet, der internetfähige Fernseher, der Router und die angeschlossenen Geräte brauchen Strom. Auch die Netzinfrastruktur und die Rechenzentren haben einen erheblichen Strombedarf. Die Herstellung der Hardware verbraucht Rohstoffe und emittiert Treibhausgase. Geräte lange nutzen: Nutzen Sie Ihre Hardware wie Computer, Notebook, Smartphone, Tablet oder Router möglichst lange, denn die Herstellung dieser Geräte verbraucht viele wertvolle Rohstoffe, belastet die Umwelt und erzeugt Treibhaus-Gase. Auch in der Nutzung können Sie Strom sparen. Tipps finden Sie auf unseren Info-Seiten zu Smartphones/Tablets , Computern und Notebooks und Produkte länger nutzen . Sparsame und langlebige Geräte kaufen: Achten Sie beim Kauf von Computer und Co auf den Stromverbrauch. Achten Sie auch auf den Stromverbrauch des Routers. Router für Telefon und Internet sind in der Regel ständig am Netz und können je nach Gerät und Nutzung mehr als 50 € Stromkosten im Jahr verursachen. Achten Sie beim Neukauf eines Routers deshalb darauf, dass Sie ein Gerät mit möglichst geringer Leistungsaufnahme in Betrieb und Stand-by auswählen. Das ist besonders wichtig, wenn Sie Ihr Telefon an den Router anschließen, da Sie dann den Router nicht vom Netz trennen werden. Achten Sie beim Neukauf darauf, dass man die WLAN-Funktion separat ausschalten kann, möglichst auch zeitgesteuert. Weitere Orientierung bietet der Blaue Engel für Router . Lieber durch die Erde surfen als durch die Luft: Der Internetzugang mit mobiler Breitbandverbindung ist praktisch und kaum noch teurer als ein stationärer Anschluss. Daten über eine Mobilfunkverbindung zu übertragen, verbraucht jedoch mehr Energie als über einen stationären Anschluss mit LAN oder WLAN. Wenn Sie beispielsweise eine Stunde Video in HD streamen, dann verursacht das für den Aufwand im Rechenzentrum des Streaming-Anbieters und die Datenübertragung über Glasfaser 2 g, über Kupferkabel 4 g und über LTE (Mobilfunk, 4G) 13 g CO₂-Äquivalente (dazu kommen noch Ihr Router und Ihr Endgerät). Wenn Sie die Wahl haben, nutzen Sie einen stationären Anschluss. Bildauflösung reduzieren: Wählen Sie eine möglichst geringe Bildauflösung, wenn Sie in Mediatheken, bei Streamingdiensten oder auf Internetplattformen Filme und Videos schauen. Das gilt besonders für Geräte mit kleinen Bildschirmen wie Smartphones und Tablets. Sie können zwar Videos in hoher Auflösung streamen, der Unterschied ist aber auf dem kleinen Bildschirm ohnehin nicht oder kaum zu sehen. Zusätzlicher Vorteil: Wenn die Internetverbindung nicht so gut ist, läuft das Video stabiler. Das Gleiche gilt übrigens für Videokonferenzen. Datensparsamkeit: Reduzieren Sie die Auflösung von Fotos und Videos, die Sie per Mail oder Social Media verschicken, versenden Sie lieber Links statt großer Dateien, löschen Sie Accounts, die Sie nicht nutzen und kündigen Sie Newsletter, die Sie nicht lesen. Das spart Datenvolumen für die Übertragung sowie Speicherplatz in den Rechenzentren von Social-Media- und E-Mail-Anbietern Stromverbrauch des Routers reduzieren: Wenn Sie den Router nicht brauchen, dann schalten Sie ihn zum Beispiel mittels Steckerleiste aus. Wenn Ihr Festnetz-Telefon allerdings an den Router angeschlossen ist, möchten Sie ihn vermutlich nicht ausschalten. Bei vielen Routern können Sie das WLAN aber separat deaktivieren, zum Beispiel nachts oder wenn Sie nicht zu Hause sind. Viele Router bieten zeitgesteuertes automatisches An- und Abschalten des WLANs an. Wenn Sie Daten vom Router zu Ihrem Computer oder internetfähigen Fernseher per LAN-Kabel statt per WLAN übertragen, sparen Sie zusätzlich Strom. Das lohnt sich vor allem bei großen Datenmengen, zum Beispiel beim Videostreaming. Ökologischen Anbieter wählen: Mittlerweile gibt es auch "grüne" E-Mail-Anbieter sowie Suchmaschinen. Diese decken den Energiebedarf ihrer Rechenzentren mit Ökostrom und/oder kompensieren die Treibhausgasemissionen der Dienstleistungen. Achten Sie dabei auf die Label für Ökostrom (Grüner Strom Label, ok-Power) sowie für Kompensationszahlungen (The GoldStandard). Fragen Sie bei den Anbietern nach, ob ihre Rechenzentren den Blauen Engel für Rechenzentren tragen. Was Sie noch tun können: Bevorzugen Sie – wenn möglich – herkömmliches Programmfernsehen gegenüber Video-Streaming (Mediatheken). Wechseln Sie zu einem Ökostrom-Anbieter. Tipps finden Sie auf unseren Seiten zu Ökostrom . Wählen Sie Ihren E-Mail-Anbieter nach Umweltkriterien (z.B. Server mit Ökostrom) aus. Hintergrund Ob Suchen, Spielen, Chatten, Downloaden – die Informations- und Kommunikationstechnik führt dazu, dass der Strombedarf wächst. Die Zeit, die Menschen im Internet verbringen und die Menge der übertragenen Daten (etwa für Filme und Musik) steigen weiter. Deshalb wird voraussichtlich auch der Energiebedarf für diese Dienste weiter steigen. Von 2020 bis 2023 haben die Treibhausgasemissionen der Digitaltechnik (Rechenzentren, Netze und Endgeräte) in Deutschland von rund 20 Mio. Tonnen CO 2 -Äquivalenten im Jahr auf rund 24 Mio. Tonnen im Jahr zugenommen. Prognosen gehen von einer weiteren Zunahme auf bis zu 30 Mio. Tonnen im Jahr 2030 aus. Zwar wird die Hardware immer effizienter, der Gesamtbedarf an Hardware und Energie steigt dennoch. Bei den Servern nehmen die elektrischen Leistungen von CPU und GPU, insbesondere bei Geräten für Maschinelles Lernen, stark zu. Weitere Informationen finden Sie hier: Grüne Informationstechnik ( UBA -Themenseite)
Im Projekt SupraGenSys 1 wurde ein vollsupraleitend ausgeführter und direkt angetriebener Generator für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung entworfen und optimiert. In diesem Projekt sind bereits wesentliche Ergebnisse erzielt worden. In diesem Projekt zeigte sich der Generator bereits mit beeindruckenden Kennzahlen und verspricht durch Absenkung der Stromgestehungskosten ein wesentlicher Fortschritt für den Ausbau der Windenergie zu werden. In dem Folgeprojekt SupraGenSys 2 soll ein Demonstrationsgenerator ( DG ) konstruiert und gefertigt werden. Die Projektpartner übernehmen die Berechnung des Generators, die Konstruktion des Generators und der Einzelteile, sowie die Materialbeschaffung. Die Krämer Energietechnik GmbH & Co. KG übernimmt die Konstruktion, Materialbeschaffung und Fertigung aller erforderlichen Vorrichtungen. Die Fertigung der HTS-Spulen und der geblechten Kerne sowie die Montage von Rotor, Stator und Kyrostat wird ebenfalls bei Krämer erfolgen. Die Prüfung der tiefgekühlten Spulen wird mit Unterstützung des KIT bei Krämer durchgeführt. Anschließend erfolgt die Endmontage des Generators durch Krämer bei Fraunhofer IEE in Kassel.
In SupraGenSys 2 soll der Demonstrator auf Basis eines optimierten 10 MW Voll-HTS (Hochtemperatur-Supraleitung) Generators entwickelt werden. Dafür sind umfangreiche Berechnungen, sowie der Entwurf und die Konstruktion der entsprechenden Teilsysteme notwendig, bis letztlich alles im Demonstrator zusammenkommt und das Konzept eines Voll-HTS Generators geprüft und erprobt werden kann. Dafür ist eine enge Zusammenarbeit des Konsortiums notwendig, welches sich bereits in SupraGenSys bewähren konnte und für SupraGenSys 2 auf Grund des Potentials erweitert wurde. Der Beitrag von ProFluxx fokussiert auf die Konstruktion des Demonstrators. ProFluxx hat langjährige Erfahrungen in der Konstruktion von elektrischen Maschinen insbesondere Synchrongeneratoren. Hierbei liegt der Schwerpunkt im Bereich von 2 MVA (1,6 MW) bis 20 MVA (16 MW) und deckt somit den Zielleistungsbereich des 10 MW Voll-HTS Generators ab. ProFluxx ist daher mit der Auslegung der sogenannten Passivteile (Gehäuse, Lagerung, etc.) für die Zielgröße vertraut und wird entsprechende Konzepte auf Demonstratorgröße entwickeln. Zusammen mit den Projektpartnern wird ProFluxx diese Konzepte unter Berücksichtigung der späteren Scale up activity bewerten und ein Konzept auswählen, das dann detailliert wird und letztendlich gefertigt wird. Ein bedeutender Aspekt bei der Konzept Bewertung ist das Verständnis der Neuartigkeit der sogenannten Aktivteile (Kryostate, HTS Wicklungen und Blechpakete für Stator und Rotor).
Ziel des Teilprojekts in Zusammenarbeit mit den Partnern ist Design, Fertigung und Test eines 'HTS retrofit Rotors' für einen mid-speed Generator für die Windkraft. Dabei unterstützt das KIT ITEP in mehreren Arbeitspaketen mit der besonderen Expertise in Hochtemperatursupraleitern (HTS), in Kryotechnologie und im Design von HTS-basierten rotierenden Maschinen.
Origin | Count |
---|---|
Bund | 385 |
Land | 26 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 370 |
Text | 18 |
Umweltprüfung | 11 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 32 |
offen | 369 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 386 |
Englisch | 63 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 3 |
Datei | 1 |
Dokument | 11 |
Keine | 189 |
Webdienst | 3 |
Webseite | 206 |
Topic | Count |
---|---|
Boden | 181 |
Lebewesen & Lebensräume | 170 |
Luft | 245 |
Mensch & Umwelt | 405 |
Wasser | 150 |
Weitere | 396 |