Im Projekt SupraGenSys 1 wurde ein vollsupraleitend ausgeführter und direkt angetriebener Generator für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung entworfen und optimiert. In diesem Projekt sind bereits wesentliche Ergebnisse erzielt worden. In diesem Projekt zeigte sich der Generator bereits mit beeindruckenden Kennzahlen und verspricht durch Absenkung der Stromgestehungskosten ein wesentlicher Fortschritt für den Ausbau der Windenergie zu werden. In dem Folgeprojekt SupraGenSys 2 soll ein Demonstrationsgenerator ( DG ) konstruiert und gefertigt werden. Die Projektpartner übernehmen die Berechnung des Generators, die Konstruktion des Generators und der Einzelteile, sowie die Materialbeschaffung. Die Krämer Energietechnik GmbH & Co. KG übernimmt die Konstruktion, Materialbeschaffung und Fertigung aller erforderlichen Vorrichtungen. Die Fertigung der HTS-Spulen und der geblechten Kerne sowie die Montage von Rotor, Stator und Kyrostat wird ebenfalls bei Krämer erfolgen. Die Prüfung der tiefgekühlten Spulen wird mit Unterstützung des KIT bei Krämer durchgeführt. Anschließend erfolgt die Endmontage des Generators durch Krämer bei Fraunhofer IEE in Kassel.
Das Vorhaben baut auf die im Projekt SupraGenSys (Förderkennzeichen 03EE3010B) erarbeiteten Ergebnisse zum Entwurf und zur Optimierung eines vollsupraleitend ausgeführten und direkt angetriebenen Generators für WEA (Windenergieanlagen) mit 10 MW Bemessungsleistung auf. Die sich abzeichnende Verringerung der Stromgestehungskosten spielt eine wesentliche Rolle und verspricht den Ausbau der Windenergienutzung zu beschleunigen. Bisher durchgeführte Berechnungen berücksichtigen komplexe Systeme und deren Abhängigkeiten voneinander. Daraus ergibt sich die Wichtigkeit eines 'Proof-of-Concept', um anhand experimenteller Untersuchungen an einem Demonstrationsgenerator die ökonomische und technische Sinnhaftigkeit zu bestätigen und nachzuweisen, dass die Realität durch die Berechnungsmodelle hinreichend gut abgebildet wird. So kann das Vertrauen der Industrie in diese vielversprechende Technologie gestärkt werden. Ziel des Vorhabens ist somit die Entwicklung und der Aufbau eines 250-kW-Demonstrationsgenerators im Labor auf Basis des optimierten 10-MW-Voll-HTS-Generators. Mit Hilfe dieser Maschine werden die in SupraGenSys erarbeiteten Ergebnisse validiert und die entwickelten Berechnungsroutinen überprüft. Die Siemens AG trägt innerhalb des Konsortiums im Rahmen ihres Teilvorhabens zum Konzept und zum konzeptionellen Design des Demonstrationsgenerators bei. Besonderes Augenmerk gilt dabei der Untersuchung und Optimierung von Wechselstromverlusten in den supraleitenden Spulen von Rotor und Stator des neuartigen Generators. Die langjährige Erfahrung bei der Entwicklung von Elektromaschinen mit supraleitenden Rotorwicklungen fließt in die elektromagnetische Auslegung des 250-kW-Voll-HTS-Generators ein. Schließlich werden die Testergebnisse auf einen Multi-MW-Generatorentwurf übertragen.
In SupraGenSys 2 soll der Demonstrator auf Basis eines optimierten 10 MW Voll-HTS (Hochtemperatur-Supraleitung) Generators entwickelt werden. Dafür sind umfangreiche Berechnungen, sowie der Entwurf und die Konstruktion der entsprechenden Teilsysteme notwendig, bis letztlich alles im Demonstrator zusammenkommt und das Konzept eines Voll-HTS Generators geprüft und erprobt werden kann. Dafür ist eine enge Zusammenarbeit des Konsortiums notwendig, welches sich bereits in SupraGenSys bewähren konnte und für SupraGenSys 2 auf Grund des Potentials erweitert wurde. Der Beitrag von ProFluxx fokussiert auf die Konstruktion des Demonstrators. ProFluxx hat langjährige Erfahrungen in der Konstruktion von elektrischen Maschinen insbesondere Synchrongeneratoren. Hierbei liegt der Schwerpunkt im Bereich von 2 MVA (1,6 MW) bis 20 MVA (16 MW) und deckt somit den Zielleistungsbereich des 10 MW Voll-HTS Generators ab. ProFluxx ist daher mit der Auslegung der sogenannten Passivteile (Gehäuse, Lagerung, etc.) für die Zielgröße vertraut und wird entsprechende Konzepte auf Demonstratorgröße entwickeln. Zusammen mit den Projektpartnern wird ProFluxx diese Konzepte unter Berücksichtigung der späteren Scale up activity bewerten und ein Konzept auswählen, das dann detailliert wird und letztendlich gefertigt wird. Ein bedeutender Aspekt bei der Konzept Bewertung ist das Verständnis der Neuartigkeit der sogenannten Aktivteile (Kryostate, HTS Wicklungen und Blechpakete für Stator und Rotor).
Gasturbinen für den flexiblen Einsatz zur Stromerzeugung aus synthetischen Brennstoffen werden kleine, robuste Einheiten mit kompakten Radialverdichtern sein. Ein Ziel des Teilvorhabens ist die Verifizierung des Designs einer Radialverdichterstufe mit erweitertem Arbeitsbereich mit transsonischen Zuströmbedingungen. Die hohen Machzahlen im Gehäusebereich des Laufradschaufeleintritts sind die Folge von hochbelasteten Stufen, die bei hohen Drehzahlen einen großen Arbeitseintrag liefern sollen. Ein Gleichdrall in der Zuströmung zum Rotor reduziert die relative Machzahl und damit auch die Stoßverluste im Rotor, senkt aber gleichzeitig den Arbeitseintrag ab, wenn nicht die Umlenkung der Strömung im Rotor oder der Austrittsradius angepasst wird. Passend zu einer bestehenden Stufe ohne Vordrall soll eine Stufe mit Vordrall und gleichem Arbeitseintrag untersucht werden, um durch die reduzierten relativen Machzahlen einen hohen Wirkungsgrad und einen breiten Arbeitsbereich zu erzielen. Hochtemperatur-Thermalfarbverfahren zur Ermittlung der tatsächlichen Bauteiltemperaturen in hochbelasteten Turbinenkomponenten sind ein wichtiges Validierungselement der numerischen Auslegungswerkzeuge. Derzeit werden die Temperaturumschlaglinien aufwändig händisch gelesen und ausgewertet. Zusammen mit der TU Dresden (AP1.3) soll das Postprocessing der Thermalfarben-Analysen mittels farbiger digitaler Zwillinge verbessert werden. Der automatisierte Prozess wird zu einer signifikanten Zeitersparnis führen. Weiterhin ermöglicht die durchgängige Digitalisierung des Prozesses die Erstellung einer digitalen 'Bibliothek' von Thermalfarbkomponenten und bildet das Fundament für die Anwendung von Methoden der Künstlichen Intelligenz zur Verbesserung der Auswertung von Temperaturumschlagslinien.
Ziel des Teilprojekts in Zusammenarbeit mit den Partnern ist Design, Fertigung und Test eines 'HTS retrofit Rotors' für einen mid-speed Generator für die Windkraft. Dabei unterstützt das KIT ITEP in mehreren Arbeitspaketen mit der besonderen Expertise in Hochtemperatursupraleitern (HTS), in Kryotechnologie und im Design von HTS-basierten rotierenden Maschinen.
1
2
3
4
5
…
39
40
41