Das Projekt "Aufklärung von Biotransformationswegen und von Mechanismen gentoxischer Wirkungen" wird/wurde ausgeführt durch: Technische Universität Kaiserslautern, Fachrichtung Lebensmittelchemie und Umwelttoxikologie, AK Prof. Gerhard Eisenbrand.Die Erkennung gesundheitlicher Risiken durch gentoxische Stoffe, die als Lebensmittelinhaltstoffe oder als Umweltkontaminanten Bedeutung haben, ist die Voraussetzung für Risikobewertung und Prävention. Bei Umweltkontaminanten gilt unser Interesse polycyklischen aromatischen Kohlenwasserstoffen mit einer sogenannten Fjordregion, die besonders potente Kanzerogene darstellen. Außerdem interessieren uns Fullerene, die im Ruß vorkommen und deren biologische Wirkung bisher nur wenig untersucht ist. Das aus beruflicher Belastung durch bestimmte Nitrosamine potentiell gesundheitliche Risiko wird im Modellversuch untersucht. Schließlich beschäftigen wir uns mit der Toxikologie bestimmter a,b-ungesättigter Alkenale, die als Lebensmittelinhalts- und -Zusatzstoffe in z.T. beachtlichen Konzentrationen (bis 30 mg/kg) in Lebensmitteln vorkommen. Metabolische Veränderungen, die fremde Stoffe im Körper erfahren, beeinflussen ganz wesentlich deren Wirkung. Zur Aufklärung einzelner aktivierender oder entgiftender Stoffwechselwege werden transgene Säugerzellen eingesetzt, die bestimmte Enzyme (CYP) stabil exprimieren. Zusätzlich wird der Leberstoffwechsel mit Hepatozyten und Zellfraktionen (Mitochondrien, Mikrosomen) simuliert. Metabolite werden über GC/MS identifiziert und quantifiziert. Die gentoxische/mutagene Potenz von Ausgangsverbindungen und Metaboliten wird in-vitro an Säuger-Zellinien (z.B. humane Colonzellen) oder an primären Zellen (z.B. aus Gastrointestinaltrakt von Ratte/ Mensch) sowie in-vivo an der Ratte und ex-vivo an humanen Blutzellen geprüft. Gemessen werden: Gentoxizität in transfizierten Bakterien (Induktion von SOS-Repair), Mutagenität in Säugerzellen (HPRT-Test), Induktion von DNA-Schäden mittels Mikrogelelektrophorese und die Entstehung vonDNA-Addukten mittels 32P-Postlabelling-Verfahren. Zusätzlich werden zytotoxische Effekte (einschließlich Membranschäden und Apoptose-Induktion) in Zellkulturen erfasst.
Darstellung aller Stationen und Messwerte der BLUME-, RUBIS- und Passivsammler-Messnetze seit 1975 sowie ausgewählter langjährig betriebener Berliner Klimastationen
Das Projekt "Elektrofilter fuer Dieselruss - 2. Phase" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Dr. Dickels und Partner Ingenieurgemeinschaft.
Wegweiser Notfallschutz Radiologische Notfälle: Notfallszenarien, Folgen und Schutzmaßnahmen Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Je nach Art eines radiologischen Notfalls arbeiten Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands. Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Die bekanntesten radiologischen Notfälle mit massiven Freisetzungen radioaktiver Stoffe in die Umwelt ereigneten sich 1986 in Tschornobyl ( russ. : Tschernobyl) in der Ukraine und 2011 in Fukushima in Japan. Was ist ein radiologischer Notfall? Quelle: christian aslund/EyeEm/Stock.adobe.com 2011: Der Unfall von Fukushima 1986: Der Unfall von Tschornobyl (russ.: Tschernobyl) Notfallszenarien und Schutzmaßnahmen Welche und wie viele radioaktive Stoffe in einem radiologischen Notfall austreten können und welche Auswirkungen auf die Umwelt und die körperliche und psychische Gesundheit der Bevölkerung in Deutschland zu erwarten sind, ist abhängig von der Art des Unfalls (Notfallszenario) . Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland arbeiten je nach Art eines radiologischen Notfalls eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Sie ergreifen bei Überschreitung der gesetzlich festgelegten Notfall-Dosiswerte unterschiedliche Maßnahmen zum Schutz der Bevölkerung und der Einsatzkräfte : Frühe Schutzmaßnahmen werden von den Katastrophenschutzbehörden der Bundesländer angeordnet und umgesetzt. Solche Maßnahmen sind etwa die Evakuierung von Menschen aus Gebieten, die in hohem Maße von radioaktiven Kontaminationen betroffen sein können, oder die Anordnung, dass Menschen zum Schutz vor radioaktiven Stoffen in Gebäuden bleiben sollen. Zum Schutz der Schilddrüse vor radioaktivem Jod kann für Menschen unter 45 Jahren in einem bestimmten Umkreis um einen Freisetzungsort auch die Einnahme von hochdosierten Jodtabletten angeordnet werden. Vorsorgende Maßnahmen, damit Menschen so wenig radioaktive Stoffe wie möglich mit der Nahrung aufnehmen, können etwa Ernte- und Verkaufsbeschränkungen für Lebensmittel sein. Welche Folgen hat ein radiologischer Notfall für Umwelt und Gesundheit? Video: Abläufe im radiologischen Notfallschutz Jodtabletten richtig einnehmen Nationale und internationale Zusammenarbeit In Deutschland sind die Aufgaben im nationalen radiologischen Notfallschutz auf verschiedene Behörden und Organisationen verteilt. Zum Beispiel tritt bei radiologischen Notfällen mit überregionalen Folgen für die Umwelt ein besonderer Krisenstab unter der Leitung des Bundesumweltministeriums zusammen: das Radiologische Lagezentrum des Bundes . Es stellt unter anderem Bundes- und Länderbehörden ein einheitliches Lagebild zur radiologischen Situation zur Verfügung, koordiniert radiologische Messungen , empfiehlt Schutzmaßnahmen und informiert die Bevölkerung. Da Strahlung nicht vor Ländergrenzen Halt macht, kooperiert Deutschland im radiologischen Notfallschutz auf internationaler Ebene bilateral mit Nachbarländern sowie europaweit und weltweit. Wer macht was im radiologischen Notfall? BfS unterstützt Bundesumweltministerium und Länderbehörden Das BfS ist Teil des Radiologischen Lagezentrums des Bundes . Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands . In einem radiologischen Notfall werden die Messungen intensiviert und durch mobile Messsysteme am Boden und/oder in der Luft ergänzt. Mitarbeitende des BfS üben regelmäßig die Abläufe im Ernstfall – mit Messfahrzeugen am Boden und mit Hubschraubern in der Luft . Im Informationssystem IMIS laufen alle Messergebnisse zusammen. Europäische und weltweite Messnetze wie das International Monitoring System der CTBTO ergänzen die Messungen auf internationaler Ebene. Auch radiologische Messungen am Menschen führt das BfS durch. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 10.10.2024
Das Projekt "Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Großflughäfen sind eine relevante Quelle kurzlebiger Luftschadstoffe. Ihr quantitativer Beitrag zur gesundheitlichen Belastung der Anwohner ist besonders dort mit Unsicherheiten behaftet, wo auch andere Verursacher existieren, bspw. in Großstädten. Feldmessungen und Modellierungen sollen den Einfluss der Emissionen des Großflughafens Berlin Tegel (TXL) und BER auf die räumliche Verteilung folgender Schadstoffe vor und nach Schließung im Herbst 2020 untersuchen: Ultrafeinstaub (UFP) und Black Carbon (Ruß) sowie PM10, PM2,5 und NO2. Es werden drei stationäre Messstationen über ca. 2 Jahre im Umfeld von BER betrieben. In Bezug auf UFP (Partikelanzahlkonzentration und -verteilung) werden der Gesamtanteil und der nichtflüchtige Anteil gemessen. Zusätzlich werden mobile Messsysteme in mehrwöchigen Messkampagnen die räumliche Verteilung der Schadstoffe in der Abluftfahne von BER bestimmen. Die Ausbreitungsmodellierung wird mit einem Raster von 500 m für den Großraum Berlin sowie feiner aufgelöst (ca. 200 m) im Umfeld TXL und zum Teil für Schönefeld (SXF) bzw. den geplanten Berliner Großflughafen BER durchgeführt werden. Bereits entwickelte modulare Modellansätze (u.a. mittels LASPORT) sollen genutzt werden: Ausbreitung von nichtflüchtigen UFP im Umfeld von Flughäfen aufgrund Straßenverkehrs- und Flughafenaktivitätsdaten mit Lagrange Modellen. Hintergrundbelastung: Chemietransportmodelle inkl. Partikelklassen bzw. -moden. Für jedes Rasterquadrat wird ein Jahresmittelwert (1 h Basis) erstellt inkl. Herkunftsanteile. Für die Standorte der Messstationen und für Messorte der Kohorten in der BEAR-Studie werden 1h-Zeitreihen bereitgestellt. Zur Validierung des Hintergrundes werden Daten der UBA Station Neuglobsow herangezogen. Außerdem beteiligt: Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: für Umgebung Flughafen, Flughafen Berlin Brandenburg (FBB) für SXF Ein Begleitkreis wird gebildet.
• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.
Das Projekt "Bewertung der kanzerogenen Potenz von Russen und Staeuben im photodynamischen Bioassay" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Institut für Umwelthygiene und Präventivmedizin.
Das Projekt "Ship Emission Inspection with Calibration-free Optical Remote sensing, Vorhaben: Spektroskopischer Nachweis von Nachweis von CO2, NO und Ruß" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Wasserchemie und Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie.
Das Projekt "Synthetisches Methanol als maritimer Kraftstoff für die Schifffahrt aus Bremerhaven, Synthetisches Methanol als maritimer Kraftstoff für die Schifffahrt aus Bremerhaven (MariSynFuel)" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Das Projekt "Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Umweltmineralogie.Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.
Origin | Count |
---|---|
Bund | 654 |
Land | 90 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 6 |
Ereignis | 6 |
Förderprogramm | 559 |
Text | 86 |
unbekannt | 80 |
License | Count |
---|---|
geschlossen | 133 |
offen | 592 |
unbekannt | 12 |
Language | Count |
---|---|
Deutsch | 700 |
Englisch | 73 |
andere | 3 |
Resource type | Count |
---|---|
Archiv | 22 |
Bild | 7 |
Datei | 15 |
Dokument | 34 |
Keine | 488 |
Unbekannt | 2 |
Webdienst | 6 |
Webseite | 221 |
Topic | Count |
---|---|
Boden | 733 |
Lebewesen & Lebensräume | 729 |
Luft | 726 |
Mensch & Umwelt | 735 |
Wasser | 729 |
Weitere | 721 |