Objective weather types of Deutscher Wetterdienst derived from different Reanalysis and Global Climate Model simulations for the control run (1951-2000) and the projection period (2000-2100). On the one hand, the dataset is useful for evaluation of representative circulation statistics in Central Europe, on the other hand, for the analysis of future weather types due to climate change. Added temperature and precipitation data allow to study the weather type effectiveness for these important climate parameters.
Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Blockheizkraftwerke (BHKW) eignen sich besonders für dezentrale Strom- und Wärmekonzepte und bilden eine effiziente Regelenergiequelle für virtuelle Kraftwerke. Es ist daher notwendig, die Erzeugung von Strom und Wärme durch geeignete Speichersysteme im Tageslastgang weitestgehend zu entkoppeln. Latentwärmespeicher (LWS) ermöglichen im Vergleich zu Wasserspeicher höhere Speicherdichten, kommen aber aufgrund hoher Kosten bislang kaum zum Einsatz. Für kompakte Systemlösungen aus Klein-BHKW und Speicher wären jedoch höhere Speicherdichten jedoch wünschenswert. Zielstellung des Projektes ist daher die Untersuchung von Makroverkapselungen für Latentspeichermedien (PCM) auf der Basis von Beutelverpackungen, mit denen die Speicherkosten reduziert werden können. Durch eine modulare Bauweise des Speichers wird zudem eine Anpassung an verschiedene Anwendungsfälle ermöglicht.
Objective weather types of Deutscher Wetterdienst derived from different Reanalysis and Global Climate Model simulations for the control run (1951-2000) and the projection period (2000-2100). Furthermore, the NAO-index is also provided. On the one hand, the dataset is useful for evaluation of representative circulation statistics in Central Europe, on the other hand, for the analysis of future weather types due to climate change. Added temperature and precipitation data allow to study the weather type effectiveness for these important climate parameters.
Die Beobachtungen der Radio Science Experimente Mars Express Radio Science, Mars Global Surveyor Radio Science und Venus Express Radio Science liefern eine sehr große Datenbasis für die Elektronendichteverteilung der Tagionosphäre von Mars und Venus. In der Laufzeit des Original-Antrags erfolgte die Ableitung von Profileigenschaften/Umgebungsparametern und die Entwicklung eines schnellen, flexiblen zeitunabhängigen photochemischen Modells der ionosphärischen Elektronendichte (IonA-1) für Mars (Neutralatmosphäre: Mars Climate Database) und Venus (Neutralatmosphäre: VenusGRAM). Der Vergleich der beobachteten und modellierten MaRS und VeRa Parameter des ionosphärischen Hauptmaximums (M2/V2) ergaben für Mars global eine exzellente Übereinstimmung, aber nicht für Venus (unrealistische VenusGRAM Neutralatmosphäre, Peter et al., 2014). Für die Modellierung kleinskaliger Ionosphärenmerkmale wird jedoch die individuelle Übereinstimmung der jeweiligen M2/V2 Höhen und Breiten benötigt, da dies auf Ähnlichkeiten zwischen realer und Modellatmosphäre zur Zeit der Beobachtung hinweist. Für die Modellierung von Meteorschichten unterhalb der Sekundärschicht M1/V1 wurden Fallstudien mit entsprechenden MaRS Profilen in Kombination mit einem Modell für Meteorschichten (IonA/MSDM) durchgeführt. MSDM berücksichtigt die Deponierung von Mg und Fe in eine Atmosphäre und simuliert die Bildung von Metallionen durch Photoionisation/Ladungsaustausch. Ein zusätzlich entwickeltes hydrostatisches 1D Modell der Neutralatmosphäre für ionosphärischen Höhen (NIA) bildet als flexiblere Neutralatmosphäre mit kleinskaligem Höhengitter die Basis für die Anwendung von IonA auf einen größeren Beobachtungsdatensatz. Die Weiterentwicklung von IonA-1 zu einem zeitabhängigen photochemischen Modell mit komplexem Reaktionsschema (Iona-2) ermöglicht die Modellierung von ionosphärischen Ionen. Der Fortsetzungsantrag soll NIA und IonA-2 koppeln, um ein detaillierteres Verständnis der Wechselwirkung zwischen den Ionosphären und Neutralatmosphären in ionosphärischen Höhen zu erreichen. Die Radio Science Beobachtungen der unteren Neutralatmosphäre erfolgen fast zeitgleich mit den Ionosphärenbeobachtungen und bietet so eine erste Abschätzung der Neutraldichte für NIA. Das gekoppelte Modell der Neutralatmosphäre/Ionosphäre mit konsistenter Berechnung der Neutral, Ionen- und Elektronentemperaturen (a) deckt den transportdominierten Bereich der Ionosphäre oberhalb von M2/V2 ab, (b) liefert eine realistischere Modellierung der Anomalien unterhalb von M1/V1, (c) schätzt den Beitrag der sekundären Ionisation in M1/V1/M2/V2 ab, (d) liefert Erklärungen für den sog. Bulge, eine anomale Anhäufung von Elektronen in der Topside und (e) stellt mögliche Zustände der Neutralatmosphäre in ionosphärischen Höhen während der Beobachtungen zur Verfügung. Der letzte Punkt dient der Weiterentwicklung von globalen Zirkulationsmodellen, besonders für Venus, da die Datenlage im entsprechenden Höhenbereich sehr schlecht ist.
Frame: The project is part of the GLP (Global land project) fast track action (http://bbs2008.wikidot.com) Decreasing uncertainty in predicting biome boundary shifts which aims at improving the simulation of biome boundary shifts at large spatial scales, working group Migration . The long-term goal is to improve existing vegetation models or to develop new models that are reliable and robust and can be included in Earth System models for studying biosphere-atmosphere feedbacks. Rationale: Because of the nature of terrestrial plant population and community dynamics and dispersal, and the pace of climate change, predicting the future distribution of plant species is challenging. Many coupled GCM's assume simply that the boundaries between major terrestrial biomes are either static, or adjusted non-mechanistically to follow the change of climate without time lags. In some DGVM's, a non-mechanistic treatment of biome boundaries is employed with assumed delays. Recent model simulations with both explicit seed dispersal and population and community dynamics suggest that range shifts of forest biomes will be both complex and extremely delayed (several millennia delay for centennial warming). Research topics: the effect of plant population processes and dispersal on migration, the effect of spatial heterogeneity (e.g. fragmentation or barriers) on dispersal and migration, methods to incorporate these effects into large scale models like such as DGVM's, the lags due to species migration and their effects on feedbacks to the earth system. Methods: Starting from the forest landscape model TreeMig which describes tree species migration by explicitly simulating seed dispersal on a grid of 1km wide cells, we develop numerical approaches to describe migration across heterogenous grid cells. These approaches are either aggregated models of within-cell migration speed, e.g. derived from meta-modelling, or simulating spread in a subset of smaller cells within each grid cell and then extrapolating to the larger cell. We test our methods with simulations on south-north transects in Siberia and assess the effect of species migration on the feedbacks to the earth system.
Beim Staatlichen Amt für Landwirtschaft und Umwelt Vorpommern als der zuständigen Genehmigungsbehörde stellte mit Antrag vom 06. Januar 2025, in der Fassung vom 08.07.2025, die Deutsche ReGas GmbH & Co. KGaA mit Sitz in 17509 Lubmin, Am Hafen 10, einen Antrag auf Erteilung einer immissionsschutzrechtlichen Genehmigung für die wesentliche Änderung des LNG-Terminals zur Speicherung und Regasifizierung von verflüssigtem Erdgas (FSRU-Anlage) gemäß § 16 Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274; 2021 I S. 123), das zuletzt durch Artikel 1 des Gesetzes vom 12. August 2025 (BGBl. 2025 I Nr. 189) geändert worden ist. Der Standort des LNG-Terminals befindet sich im Landkreis Vorpommern Rügen in der Gemeinde Stadt Sassnitz, Gemarkung Lanken bei Sassnitz, Flur 6, Flurstück 71/13, 71/ 15, 78/11, 78/12, sowie 76/1. Die Deutsche ReGas beabsichtigt, die Strom- und Wärmeversorgung der FSRU abweichend von der gegenwärtigen Genehmigung nicht über eine KWK-Anlage an Land, sondern ausschließlich durch die schiffseigenen Motoren und Kessel sicherzustellen. Die geplante Änderung umfasst im Wesentlichen: - Absehung von der Errichtung und dem Betrieb der Kraft-Wärme-Kopplung-Anlage (KWK-Anlage) - Betrieb der Verbrennungsmotorenanlagen der MS Energos Power sowie der MS Neptune über den Dezember des Jahres 2024 hinaus - Inbetriebnahme der SCR-Katalysatoren auf MS Neptune - Installation und Inbetriebnahme von SCR-Katalysatoren auf der MS Energos Power - Nutzung von einem Öl/Gas-Kombibrenner und zwei gasbefeuerten Brennern je Kessel
Durch die internationale Forschungsgemeinschaft werden Globalmodellläufe in verschiedenen Phasen des Coupled Model Intercomparison Project ( CMIP ) in Vorbereitung des nächsten IPCC-Berichtszyklus berechnet. Ergebnisse dieser Globalmodellsimulationen haben grobe Auflösungen (> 100 km x 100 km), welche für regionale Betrachtungen des zu erwartenden Klimawandels nicht ausreichend sind. Mit Hilfe von Regionalmodellen (Regional Climate Models - RCMs) können die Ergebnisse aus Globalmodellrechnungen auf räumlich höhere Auflösungen gebracht werden: Da regionale Klimamodelle lediglich einen Ausschnitt der Atmosphäre betrachten, benötigen sie geeignete Randbedingungen an den Grenzen des Simulationsgebietes. Diese Randbedingungen stammen aus Simulationen der globalen Klimamodelle. Man spricht davon, dass ein regionales Klimamodell durch ein globales Klimamodell angetrieben wird. Dieser Prozess wird als „Nesting“ bezeichnet. Für die 5. Phase des CMIP (CMIP5) liegen solche regionalisierten Klimamodelldaten für Deutschland bzw. Europa in einer Auflösung von 12,5 km x 12,5 km vor. Diese wurden in verschiedenen Initiativen bzw. Projekten erstellt: EURO-CORDEX, ReKliEs-De, EPISODES (DWD) Im Rahmen von EURO-CORDEX ( Co o r dinated D ownscaling Ex periment - Euro pean Domain), als Teil der CORDEX-Initiative, wurden europaweite, regionalisierte Klimasimulationen/ Projektionen (auf Basis des CMIP5) erstellt. Ein großer Vorteil dieses Ensembles (= Menge an Klimamodellläufen) ist die Festlegung von einheitlichen Ausgabeformaten des Datenoutputs der Modelle (z. B. einheitliche räumliche Auflösung; vorgegebene, obligatorische Ausgabevariablen). Dies erleichtert die Vergleichbarkeit und Auswertung der vorliegenden Modellläufe. In dem BMBF-finanzierten Projekt ReKliEs-De ( Re gionale Kli maprojektionen E n s emble für De utschland) wurden die Ergebnisse aus EURO-CORDEX um weitere Läufe ergänzt. Weitere regionalisierte Projektionsdaten liefert EPISODES. Es handelt sich dabei um eine Empirisch-Statistische Downscaling Methode, welche durch den Deutschen Wetterdienst (DWD) entwickelt wurde. Alle diese benannten Modelldaten stehen auf dem ESGF-Knoten des DWD bzw. des Deutschen Klimarechenzentrums (DKRZ) für die Öffentlichkeit zur Verfügung. Aus den oben genannten Initiativen bzw. Projekten ist somit ein Ensemble von regionalisierten Klimamodellsimulationen entstanden, welches im Nachhinein durch verschiedene Gründe/Ausschlüsse nochmal einmal reduziert werden musste: verschiedene Rückzüge einiger Modellläufe aufgrund methodisch begründbarer Modellfehler durch die jeweiligen Modellierergruppen bzw. durch den DWD Ausschlüsse aufgrund von Unplausibilitäten in der Reproduktion der Vergangenheit in manchen Modellen sowie Ausschlüsse von Läufen, welche in der Reproduktion der Vergangenheit die Referenzperiode 1961 bis 1990 nicht abdecken. (Die letzten beide Ausschlüsse erfolgten durch die Umweltämter der drei Bundesländer Sachsen-Anhalt (LAU), Sachsen (LfULG) und Thüringen (TLUBN)) Im Ergebnis ist das mitteldeutsche Referenzensemble entstanden, welches für die Szenarien RCP2.6, RCP4.5 und RCP8.5 je 17, 18 bzw. 25 Läufe beinhaltet. Eine genaue Auflistung des Ensembles ist in der Dokumentation zum Mitteldeutschen Kernensemble (MDK, siehe unten) zu finden. Eine ausführliche Auswertung dieses Klimamodellensembles für Sachsen-Anhalt ist im Ergebnisbericht sowie Synthesebericht des Projektes „Klimamodellauswertung Sachsen-Anhalt 1961-2100“ zu finden. Die Broschüre „ Der Klimawandel vor unserer Haustür “ liefert eine etwas leichter verständliche Kurzdarstellung der mittleren Ergebnisse der Klimamodellauswertung. Im Nachfolgenden sei ein kleiner Einblick in die Ergebnisse dieser Auswertung gegeben. Eine Kernaussage des Projektes lautet: „RCP2.6 und RCP8.5 unterscheiden sich in ihren Auswirkungen auf das Klima stark, insbesondere was die Entwicklung des Klimas nach 2050 betrifft. “ Es „[…] wird […] deutlich, dass das RCP8.5 Änderungssignale für das Klima in Sachsen-Anhalt beinhaltet, die weit außerhalb der heute üblichen Bandbreite liegen, während das RCP2.6 lediglich eine moderate Verschiebung des Klimas in Richtung dessen bedeutet, was wir heute als oberen Bereich der Bandbreite beschreiben würden. Die Stärke und besonders die Geschwindigkeit der Änderung des Klimas hängt also sehr stark von den Maßnahmen zum Klimaschutz ab und es könnte sehr schwierig sein, die Infrastruktur sowie andere gesellschaftliche Systeme an die neuen Gegebenheiten anzupassen.“ Anhand der Projektion der Tagesmitteltemperatur sowie des Niederschlags sei dies verdeutlicht. Die Auswertung des Referenzensembles für das Gebiet von Sachsen-Anhalt zeigt folgende, zu erwartende Entwicklungen auf: Stagnation der Erwärmung ab 2050 im RCP2.6 Im RCP2.6-Szenario (Szenario mit globalem Klimaschutz) zeigt sich für Sachsen-Anhalt sowohl für die nahe Zukunft (Mittel der Periode 2021 bis 2050) als auch für die ferne Zukunft (Mittel der Periode 2071 bis 2100) eine Temperaturzunahme von knapp 2 K im Vergleich zur Referenzperiode (1961 bis 1990). Durch die Reduzierung der Treibhausgasemissionen, welche in diesem Szenario angenommen wird, kann die Temperaturzunahme somit eingedämmt werden und stagniert ab Mitte des Jahrhunderts. Beschleunigung der Erwärmung ab 2050 nach RCP8.5 Für das Szenario RCP8.5 (Szenario ohne globalen Klimaschutz) zeigt sich für die nahe Zukunft (2021 bis 2050) eine Temperaturzunahme, die der des RCP2.6 projizierten Temperaturzunahme entspricht (ca. 2 K). Für die ferne Zukunft hingegen zeigt dieses Szenario eine Temperaturzunahme von rund 4 K für Sachsen-Anhalt. Einige Modelle zeigen sogar über 5 K Temperaturzunahme an. Ähnliche Größenordnungen der Temperaturentwicklung der einzelnen Jahreszeiten wie des Gesamtjahrs (für beide Szenarien sowie beide Zukunftsperioden) Ausnahme bildet hierbei der Sommer: Für das RCP8.5 zeigt sich für die ferne Zukunft eine deutlich größere obere Spannweite der Temperaturzunahme von 7 K und mehr. Verschiebung der Niederschlagsverteilung über das Jahr: In beiden RCP-Szenarien zeigt sich eine Tendenz zu leichter Niederschlagszunahme im Winter sowie eine Tendenz zu leichter Niederschlagsabnahme im Sommer, welche je nach betrachtetem Zeitraum und Szenario stärker oder schwächer ausfallen kann. Man beachte hierbei jedoch die Spannweiten der projizierten Niederschlagsänderung, welche zum Teil auch in das entgegengesetzte Vorzeichen (im Vergleich zum Ensemblemittel) rutschen können. Leichte Niederschlagszunahme für das Gesamtjahr Jedoch ist auch hier auf die große Spannbreite der Projektionen hinzuweisen. Die untere Spanne der Modellsimulationen zeigt für beide Zeiträume und beide Szenarien eine Niederschlagsabnahme an. Eine kurze Einordnung der oben benannten Ergebnisse sei im Folgenden gegeben: Unter dem Aspekt, der Temperaturzunahme und damit einhergehend zunehmender Verdunstung ist mit negativen Auswirkungen auf den Wasserhaushalt vor allem im Sommer zu rechnen. Für die Entwicklung des Niederschlags ist anzumerken, dass es sich beim Verständnis und der Modellierung von Wolkenprozessen und damit auch des Niederschlags um Gegenstand der Forschung handelt. Zum einen sind die wolkenphysikalischen Prozesse weiterhin Bestandteil der Grundlagenforschung. Zum anderen bedingt die Kleinskaligkeit der Prozesse, dass diese auf dem Modellgitter nicht aufgelöst werden können und deshalb parametrisiert werden müssen, was Unsicherheiten mit sich bringt. Es ist daher darauf zu verweisen, dass es sich bei der zukünftig zu erwartenden Niederschlagsverteilung/-entwicklung lediglich um Tendenzen handelt, die keine 100-prozentig gesicherten Aussagen liefern können. In der Frage, ob es ein Zuviel oder ein Zuwenig an Wasser geben wird, muss sich die Gesellschaft/Wasserwirtschaft auf beide Möglichkeiten/Herausforderungen einstellen - nicht zuletzt, da es sich bei den dargestellten Tendenzen um 30-Jahresmittel handelt. Innerhalb dieser Zukunftsperioden können trotzdem mehrere zu nasse ggf. hochwassergeprägte Winter (wie bspw. im Dezember 2023) aber auch Winter, die ein potenzielles Niederschlagsdefizit des Sommers nicht durch überdurchschnittliche Niederschläge ausgleichen können, existieren. Ebenso bedeutet die Tendenz zur Abnahme der Sommerniederschläge nicht, dass es keine hochwassergefährdeten Sommer mit überdurchschnittlichem Niederschlag geben werden kann. Soweit möglich, sollten immer so viele Klimamodelle wie möglich ausgewertet werden. Für den Fall, dass dies aus Kapazitätsgründen nicht möglich ist, wurde von den Umweltämtern der Bundesländer Sachsen-Anhalt, Sachsen und Thüringen das Mitteldeutsche Kernensemble (MDK) ausgewählt/erstellt. Das MDK stellt eine reduzierte Auswahl (je 7 Modellläufe für RCP2.6, RCP4.5 und RCP8.5) von regionalisierten Klimamodellsimulationen (basierend auf dem Referenzensemble) für die Region der drei Bundesländer dar. Es wurde erstellt, um den Rechenaufwand für detaillierte Auswertungen und ggf. Impact-/Wirkmodellierung zu reduzieren. Die Reduzierung/Auswahl basiert auf der Erhaltung der zukünftig simulierten Spannbreiten für die verschiedenen meteorologischen Variablen, die die Klimamodelle simulieren. Genaue/ weiterführende Informationen sind in der ausführlichen Dokumentation zum MDK zu finden: Mitteldeutsches Kernensemble - Auswertung regionaler Klimamodelldaten Letzte Aktualisierung: 18.09.2024
| Origin | Count |
|---|---|
| Bund | 876 |
| Kommune | 22 |
| Land | 974 |
| Wirtschaft | 2 |
| Wissenschaft | 118 |
| Zivilgesellschaft | 23 |
| Type | Count |
|---|---|
| Chemische Verbindung | 18 |
| Daten und Messstellen | 980 |
| Ereignis | 1 |
| Förderprogramm | 801 |
| Gesetzestext | 2 |
| Text | 46 |
| Umweltprüfung | 33 |
| unbekannt | 78 |
| License | Count |
|---|---|
| geschlossen | 113 |
| offen | 1837 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 1670 |
| Englisch | 381 |
| Resource type | Count |
|---|---|
| Archiv | 912 |
| Bild | 7 |
| Datei | 71 |
| Dokument | 53 |
| Keine | 565 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webdienst | 4 |
| Webseite | 1272 |
| Topic | Count |
|---|---|
| Boden | 1608 |
| Lebewesen und Lebensräume | 1643 |
| Luft | 1739 |
| Mensch und Umwelt | 1957 |
| Wasser | 1581 |
| Weitere | 1916 |