The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.
We will compare the role of an RNA-binding protein in floral transition in Arabidopsis thaliana and Hordeum vulgare. The RNA-binding protein AtGRP7 promotes floral transition mainly by downregulating the floral repressor FLC via the autonomous pathway. Based on our observation that AtGRP7 affects the steady-state abundance of a suite of microRNA precursors, we will globally compare the small RNA component of the transcriptome during FTi regulation in wild type plants and AtGRP7 overexpressors by deep sequencing. This will extend the knowledge on small RNAs associated with floral transition and provide insights into the regulatory network downstream of this RNA-binding protein. Further, we will address the question how AtGRP7 orthologues function in crop species lacking FLC homologues. A barley line with highly elevated levels of the AtGRP7 orthologue HvGR-RBP1 shows accelerated FTi and preanthesis development when compared to a near-isogenic parent with very low expression of this gene. We will characterize in detail flowering of this line with respect to different photoperiods and its vernalization requirement. We will employ a TILLING approach to further delineate the function of HvGR-RBP1 in flowering. A candidate gene approach to identify downstream targets will provide insights into the signaling pathways through which HvGR-RBP1 influences FTi. This project contributes to the development of a functional cross-species network of FTi regulators, the major strategic aim of the SPP.
Irrigation in the Yanqi Basin, Sinkiang, China has led to water table rise and soil salination. A model is used to assess management options. These include more irrigation with groundwater, water saving irrigation techniques and others. The model relies on input data from remote sensing.The Yanqi Basin is located in the north-western Chinese province of Xinjiang.This agriculturally highly productive region is heavily irrigated with water drawn from the Kaidu River. The Kaidu River itself is mainly fed by snow and glacier melt from the Tian Mountain surrounding the basin. A very poor drainage system and an overexploitation of surface water have lead to a series of environmental problems: 1. Seepage water under irrigated fields has raised the groundwater table during the last years, causing strongly increased groundwater evaporation. The salt dissolved in the groundwater accumulates at the soil surface as the groundwater evaporates. This soil salinization leads to degradation of vegetation as well as to a loss of arable farmland. 2. The runoff from the Bostan Lake to the downstream Corridor is limited since large amount of water is used for irrigation in the Yanqi Basin. Nowadays, the runoff is maintained by pumping water from the lake to the river. The environmental and ecological system is facing a serious threat.In order to improve the situation in the Yanqi Basin, a jointly funded cooperation has been set up by the Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) , China Institute of Geological and Environmental Monitoring (CIGEM) and Xinjiang Agricultural University. The situation could in principle be improved by using groundwater for irrigation, thus lowering the groundwater table and saving unproductive evaporation. However, this is associated with higher cost as groundwater has to be pumped. The major decision variable to steer the system into a desirable state is thus the ratio of irrigation water pumped from the aquifer and irrigation water drawn from the river. The basis to evaluate the ideal ratio between river and groundwater - applied to irrigation - will be a groundwater model combined with models describing the processes of the unsaturated zone. The project will focus on the following aspects of research: (...)
Climate change, population growth, land use changes and urbanisation and so forth forcing future generations to produce more with fewer resources. Hence innovative water harvesting approaches in combination with an integrated water management are urgently needed. In the past water harvesting was manly seen isolated and set into a bigger framework of a river basin. Overexploitation at one side necessarily leads to a shortage at the downstream region. This is especially true for basin closure. It is inevitable that integrated water management has to care about upstream/downstream interactions and between water harvesting and large scale irrigation at the catchment/river basin scale. The objective of this proposal is to set standards for water utilization on a basin (sub basin scale) to ensure food and water security in an equitable manner throughout the whole basin in the context of a range of dynamic global and regional pressures. There are numerous technologies for water harvesting available, but what is missing is an appropriate system design and synergies amongst farmers and other stakeholders. The concept of the project therefore is to links knowledge of water harvesting of different regions and analyse and investigate acceptance of systems. A SWOT analyses should be performed for each selected study region to have a sound base for highest investment benefits and also a risk analyses of investment. This analysis also enables the development of guidelines and criteria to transfer the various water harvesting technologies in different hydrological, biological and socio-economic conditions and to ensure integration of those technologies in the context of local and regional economical environment. The Definition of water harvesting for this project is an Integration/Synergies of/with farming systems and as a wider definition with respect to WHO, measures of conservation farming. The advantage of conservation farming is an easy to implementation, it is practical; and reduces loss of water. The prominent part of water storage with regard to water balance has to be recognized. For each basin a water balance (precipitation, evapotranspiration, surface water run off, surface and ground water interaction, subsurface storage and run off) has to be established. One of the key factors could be the water storage in sub soil. The idea of water banking will be introduced. This supports the awareness that water has a value and optimisation may have cost involved. Cost is not necessarily seen in a monetary sense, but also in providing labour hours and commitment to maintain infrastructures. Taking the above into consideration and ensuring a participatory approach at all levels and between all stakeholders and partners will lead to a sustainable production system. By taking environmental requirements and impacts into account at an early stage environmental services are becoming an appropriate value.
The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.
Project MySterI (Mycobacterial Steroids for Industry) aims to produce high value steroid precursorsusing a novel bioconversion strategy resulting in lower production costs and less cost to the environment. The aim is to convert phytosterols in cheap waste plant material to desired steroidprecursors with engineered strains of fast-growing, saprophytic mycobacteria in single fermentationsteps. The bioconversion of phytosterols has not been widely adopted in the biotechnology industrybecause of problems with microbial strains, process efficiency and therefore poor yield. At the heart of project MySterI is the bioconversion of phytosterols to 3ß-hydroxyandrost-5-ene-17-one (DHEA) orto androst-4-ene-3,17-dione (AD) (intermediary precursor) and then to 11a-hydroxyandrost-4-ene-3,17-dione (11-a-OH-AD) and testosterone. A conceptual downstream processing design methodology will be developed valid for the produced compounds. The evaluation of the production process will be done using key performance indicators (e.g., Separation Cost Indicator, Purification Fingerprints). The robot based conceptual design methodology should merge heuristic methods, automated experiments, statistical methods as well as modeling and simulation to one extensive tool.
SYNPOL aims to propel the sustainable production of new biopolymers from feedstock. SYNPOL will theretoestablish a platform that integrates biopolymer production through modern processing technologies, withbacterial fermentation of syngas, and the pyrolysis of highly complex biowaste (e.g., municipal, commercial,sludge, agricultural). The R&D activities will focus on the integration of innovative physico-chemical, biochemical,downstream and synthetic technologies to produce a wide range of new biopolymers. The integration will engagenovel and mutually synergistic production methods as well as the assessment of the environmental benefitsand drawbacks. This integrative platform will be revolutionary in its implementation of novel microwave pyrolytictreatments together with systems-biology defined highly efficient and physiologically balanced recombinantbacteria. The latter will produce biopolymer building-blocks and polyhydroxyalkanoates that will serve tosynthesize novel bio-based plastic prototypes by chemical and enzymatic catalysis. Thus, the SYNPOL platformwill empower the treatment and recycling of complex biological and chemical wastes and raw materials in asingle integrated process. The knowledge generated through this innovative biotechnological approach will notonly benefit the environmental management of terrestrial wastes, but also reduce the harmful environmentalimpact of petrochemical plastics. This project offers a timely strategic action that will enable the EU to lead worldwide the syngas fermentation technology for waste revalorisation and sustainable biopolymer production.
Objective: The WHaTeR project aims to contribute to the development of appropriate water harvesting techniques (WHTs). These WHTs should be sustainable under dynamic global and regional pressure, and strengthen rainfed agriculture, improve rural livelihood and increase food production and security in Sub-Saharan Africa. In total 3 European and 5 African organisations will be involved; namely VU University Amsterdam (The Netherlands), Newcastle University (United Kingdom), Stockholm Resilience Centre (Sweden), University of Kwazulu Natal (South Africa), Sokoine University (Tanzania), Southern and Eastern Africa Rainwater Network (Kenya), National Institute for Environment and Agricultural Research (Burkina Faso) and one Ethiopian organisation to be decided upon. Project activities will be divided over 14 Work Packages. The first Work Package covers project management and the second comprises a situation analysis-through revisits to water harvesting sites in 15 African countries studied previously by participating organisations. The next four Work Packages focus on detailed research and technology development activities on cross-cutting themes (environmental sustainability; technology development; livelihood improvement; uptake and upscalling; and global and regional impact) and will be conducted together with four country-based Work Packages (in Burkina Faso, Ethiopia, South Africa and Tanzania). One Work Package will concentrate on stakeholder communication and outreaching activities, and the final Work Packages consists of synthesis and dissemination of project results, including production of guidelines for WHTs. The project will spend an estimated 74Prozent of the budget on RTD, 13Prozent on other costs related to stakeholder workshops and outreaching and 13Prozent on project management. The expected impacts of the project comprise technology support for farmers, development of stakeholder communication networks, innovative water harvesting systems, tools for impact assessment, upstream-downstream land use, and policy support for integrated water management and adaptation to climate change to promote EU and African strategies on strengthening rainfed agriculture, food security and livelihoods.
The world is currently experiencing a major biodiversity crisis due to human activities. A primary concern is the on-going and rapid biological consequences of global climate change. Climate change is impacting alpine landscapes at unprecedented rates, with severe impacts on landscape structure and catchment hydrodynamics, as well as temperature regimes of glacial-fed rivers. Most glaciers are expected to be dramatically reduced and many even gone by the year 2100, concomitantly with changes (timing and magnitude) in temperature and precipitation. These environmental changes are predicted to have strong impacts on the persistence and distribution of alpine organisms, their population structure and community assembly, and, ultimately, ecosystem functioning. However, how alpine biodiversity (aquatic macroinvertebrates in our case) will respond to these changes is poorly understood. Most previous studies predict the presence of species based on the distribution of putatively suitable habitats but ignore biotic traits, such as dispersal, and potential eco-evolutionary responses to such changes. Clearly, accurate predictions on species responses require integrative studies incorporating landscape dynamics with eco-evolutionary processes. The primary goal of the proposed research is to empirically test determinants of alpine macroinvertebrate responses to rapid environmental change mediated by glacial recession. Climate-induced glacial retreat is occurring rapidly and in a replicated fashion (i.e. over multiple catchments and continents), which provides a natural experiment for testing determinants of organismal and species diversity responses to climate change in alpine waters. The responses of alpine aquatic macroinvertebrates are highly important because of their known sensitivity (i.e. response rates) to environmental change and their fundamental role in ecosystem functioning. Using an integrative comparative and experimental approach, we will target the following main question: What are the roles of ecological and evolutionary processes in population level responses of macroinvertebrates to environmental change? The study will take advantage of rapid glacial recession (environmental change) to empirically examine spatio-temporal patterns in species distribution in nature, combined with experimental and population genetics approaches. The data generated will be used to explicitly address the role of eco-evolutionary processes (determinants) on population level responses for selected key species. Spatial and temporal variation in species distribution, phenotypic and genetic variation will be quantified for two stream macroinvertebrates (hemimetabolous mayfly Baetis alpinus, holometabolous caddisfly Allogamus uncatus), and measuring landscape features and physico-chemical parameters along longitudinal transects downstream of glaciers and selected side-slope tributaries (as potential stepping stones for dispersal and colonization).
Warm conveyor belts (WCBs) are coherent airstreams that typically develop along cold fronts associated with extratropical cyclones. These airstreams originate in the moist subtropical marine boundary layer and ascend within 1-2 days to the upper troposphere whilst moving more than 2000 km towards the pole. They occur most frequently during winter in the western North Pacific and North Atlantic where they are responsible for the major part of precipitation. The key role of WCBs for the dynamics of the synoptic and large-scale atmospheric flow stems from their profound impact upon the tropospheric distribution of potential vorticity (PV). The coherent ascent of WCBs leads to the diabatic production of a positive PV anomaly in the lower troposphere and of a negative PV anomaly in upper-level ridges just below the tropopause. When interacting with the extratropical waveguide, these negative PV anomalies can exert a profound impact upon the downstream flow evolution. Hence a WCB can be the trigger for the amplification and breaking of an upper-level Rossby wave, which is particularly relevant in situations where Rossby wave breaking events act as precursors of high-impact weather systems (e.g., heavy precipitation in the western Mediterranean, Saharan dust storms, cold air outbreaks). Recent studies indicate that errors in medium-range numerical weather predictions might be related to the inaccurate representation of WCBs and their effect on upper-level PV. In order to advance the basic understanding of these complex, non-linear and highly important dynamical processes, this project will (i) investigate the parameters and processes that determine the intensity of a WCB, its associated PV evolution and downstream effects, (ii) assess the errors in global models' analyses and forecasts associated with the different stages of a WCB life cycle, (iii) quantify the climatological frequency of the triggering and intensification of upper-level Rossby waves by WCBs, and (iv) provide clear guidance for investigating the dynamics of WCBs within the framework of THORPEX field experiments. In three subprojects, complementary techniques will be applied in order to reach these objectives, including idealized simulations of moist baroclinic waves, real case sensitivity experiments, diagnostic investigations based upon (re-)analysis and forecast data, and a feature-based verification of WCBs in global models using independent observational datasets. In this way this project will contribute to an improved basic understanding of the dynamical effects of WCBs on the downstream evolution of upper-level Rossby waves and (high-impact) surface weather events.
Origin | Count |
---|---|
Bund | 16 |
Type | Count |
---|---|
Förderprogramm | 16 |
License | Count |
---|---|
offen | 16 |
Language | Count |
---|---|
Deutsch | 1 |
Englisch | 15 |
Resource type | Count |
---|---|
Keine | 11 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 14 |
Lebewesen & Lebensräume | 16 |
Luft | 13 |
Mensch & Umwelt | 16 |
Wasser | 12 |
Weitere | 16 |