Apparente Photosynthese und Dunkelatmung des Graesersprosses. Atmungsintensitaet der Graeserwurzel. CO2-Gaswechsel von ganzen und intakten Graspflanzen. Wirkung der Immissionsbelastung auf die Vegetation an Verkehrswegen.
Seewasserentsalzung entwickelt sich zu küstenständiger Großindustrie in ariden Gebieten mit einer Akkumulation am Persischen Golf. Die bisher unzureichend beachteten Umweltwirkungen bestehen in den Korrosionsprodukten (Schwermetalle) und den Additiven, die mit dem sog. Konzentrat ins Meer geleitet werden. Für entsprechende Umweltverträglichkeitsprüfungen wurden Empfehlungen erarbeitet.
Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Eigene Untersuchungen in einem hohen atmogenen N-Eintrag sowie erhöhten NH3- und NO2-Konzentrationen in der Außenluft ausgesetzten Fichtenwald-Ökosystem zeigen erstmals, dass autotrophe Nitrifizierer einen für diese Mikroorganismen zuvor nicht identifizierten Lebensraum, die Phyllosphäre, wahrscheinlich den Nadelapoplasten, besiedeln. Erste Ergebnisse aus in situ-Begasungsexperimenten von Fichtenzweigen dieses Standorts mit NH3 bzw. mit NH3 plus 10 Pa C2H2 (als Inhibitor der Ammoniak-Monooxygenase: AMO) deuten darauf hin, daß die beobachtete NH3-Aufnahme über die Fichtennadeln nicht allein auf pflanzliche Aktivität zurückgeführt werden kann, sondern das autotrophe Nitrifizierer hierzu wesentlich beitragen. Ziel des Vorhabens ist es, unter Einsatz molekularbiologischer und mikroskopischer Techniken (confokales LSM) zum einen die Besiedlung des Nadel-Apoplasten von Fichten durch autotrophe NH3- und NO2-Oxidierern zu charakterisieren, zum anderen die Aufnahme von atmosphärischem NH3 und NO2 in die Nadelblätter in Abhängigkeit von dieser Besiedlung zu quantifizieren. Zu diesem Zweck sollen an zwei unterschiedlich stark atmogenen N-Einträgen ausgesetzten Fichten-Standorten die Nitrifizierer im Nadel-Apoplasten genau lokalisiert und deren Zellzahlen quantifiziert werden. Diese Daten sollen mit Ergebnissen aus NH3-Gaswechselmessungen korreliert werden, die mit bzw. ohne C2H2 als Inhibitor der AMO durchgeführt werden. Darüber hinaus soll die NH3- sowie NO2-Aufnahme an sterilen bzw. mit Nitrifizierern inokulierten Fichtenjungpflanzen parametrisiert sowie im Rahmen von 15NO3-Nachweis in der apoplastischen Waschflüssigkeit die Nitrifiziereraktivität zusätzlich nachgewiesen werden.
Auskünfte über das Berliner Luftgütemessnetz BLUME und die Luftgüte erhalten Sie von Frau Dr. Grunow unter (030) 9025-2322 und Frau Dr. Kaupp unter (030) 9025-2178. Anregungen und technische Fragen zum Internetauftritt des Berliner Luftgütemessnetzes unter luftdaten.berlin.de oder zur App Berlin Luft bitte an Frau Dr. Grunow unter (030) 9025-2322 oder per Mail an blume@senmvku.berlin.de . Monats- und Jahresberichte können Sie unter (030) 9025-2319 anfordern oder unter Luftdaten-Archiv herunterladen. Bei lokalen Angelegenheiten und Beschwerden wenden Sie sich bitte an die bezirklichen Umweltämter . Auskünfte über Menge der ausgestoßenen Schadstoffe in Berlin – Emissionen erhalten Sie von Herrn Dr. Kerschbaumer unter (030) 9025-2146 Langfristige Entwicklung der Luftqualität in Berlin – Immissionen von Frau Nulis unter (030) 9025-2346 und Frau Niesel unter (030) 9025-2140 Luftreinhalteplanung von Frau Dr. Rauterberg-Wulff unter (030) 9025-2341 Projekte zum Luftreinhalteplan und umgesetzte Maßnahmen von Frau Dr. Rauterberg-Wulff unter (030) 9025-2341 Umweltzone von Herrn Schlickum unter (030) 9025-2390 Maßnahmen im Verkehrsbereich von Herrn Sternkopf unter (030) 9025-2391 und und Herrn Dr. Kerschbaumer unter (030) 9025-2146 Baumaschinen und Schiffsemissionen von Herrn Schlickum unter (030) 9025-2390 und Frau Dr. Rauterberg-Wulff unter (030) 9025-2341 Hausheizungen und Holzverbrennung von Frau Niesel unter (030) 9025-2140 und Frau Nulis unter (030) 9025-2346 Baustaub auf Baustellen, Betrieb von Baustellen und Baumaschinen unter (030) 9025-2253, E-Mail: baulaerm@senmvku.berlin.de , Beschwerdeformular Weiterführende Informationen finden Sie im Themenbereich Luft
In diesem WMS (Web Map Service) werden alle Messergebnisse der Hafenmessfahrten Hamburg bereitgestellt. Die dargestellten Geodaten beinhalten zusätzlich eine zeitliche Dimension (WMS-Time). Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Die Berichte werden sowohl in digitaler Form (ASCII-Dateien) als auch in verbaler Form erstellt. Die Messergebnisse werden entsprechend des Auswertungsintervalls als Tabellen für die Schadstoffe: Feinstaub (PM10 und PM2,5) Schwefeldioxid Ozon Stickstoffmonoxid Stickstoffdioxid Benzol und Kohlenstoffmonoxid bereitgestellt. Die Auswertung erfolgt für die 14 Messstationen des Landes: Rostock-Am Strande Rostock-Holbeinplatz Neubrandenburg Stralsund-Knieperdamm Schwerin-Obotritenring Wolgast-Oberwallstraße Gülzow Löcknitz Rostock-Stuthof Göhlen Leizen Garz Güstrow Rostock-Warnemünde. Die Monatsberichte enthalten zusätzlich zu den genannten Tabellen eine verbale Erläuterung der Schadstoffimmission innerhalb des betrachteten Zeitraums. Besonderheiten innerhalb der ermittelten Immissionssituation werden einer entsprechend intensiveren Betrachtung unterzogen.
Berechnungsergebnisse zum Gutachten "Berechnung der Kfz-bedingten Schadstoffimmissionen in Hamburg unter Berücksichtigung von potentiellen Maßnahmen der Luftreinhaltung" unter Berücksichtigung der HBEFA-Version 3.3 (Handbuch Emissionsfaktoren des Straßenverkehrs) im Entwurf. Berechnet wurden die Prognosen für die Jahre 2020 und 2025, jeweils mit Umsetzung gesamtstädtisch wirkender Minderungsmaßnahmen. Die Daten enthalten Informationen zur berechneten Gesamtbelastung des Schadstoffes Stickstoffdioxid (NO2) unter Berücksichtigung der zugrundeliegenden Eingangsdaten.
Ziel: DDT wurde früher häufig als Insektizid auch im Wohnbereich eingesetzt. Messungen zeigten, dass auch noch lange nach dem DDT Verbot (15.09.1989) DDT Konzentrationen bis 90 mg/kg Hausstaub gemessen werden können. Handlungsbedarf besteht laut Umweltbundesamt bereits ab 4 mg DDT/kg. Da die Anreicherung bzw. die Probenahme des Hausstaubes in den meisten Fällen mit einfachen Staubsaugern durchgeführt wurden, liegen keine Kenntnisse über die Größenverteilung des gesammelten Staubes vor (z.B. über die Menge der einatembaren Staubfraktion). DDT könnte aber zusätzlich auch perkutan aus Kleidungsstücken, die in den übernommenen Einbauschränken aufbewahrt und kontaminiert werden, resorbiert werden. Eine Abschätzung der inneren Belastung allein über die DDT Konzentrationen in den gesammelten Staubfraktionen ist daher nicht möglich. Methodik: Im Serum von 16 Personen, die in früheren US Wohnungen mit angeblich erhöhten DDT Belastungen leben, führten wir ein human-biomonitoring durch. Wir bestimmten im Serum der Betroffenen den DDT Metaboliten 4,4 'DDE. Ergebnisse: Im Mittel lagen die 4,4 DDE Konzentrationen im Serum mit 1,62 my/l in der Größenordnung nicht belasteter Personen (1,82 my/l).
Fuer Umweltschaeden haftet nach bestehendem Recht der Verursacher. Dieser ist insbesondere bei Luftverunreinigungen z.B. durch Verbrennung von Abfaellen bei Nacht in vielen Faellen nicht zu ermitteln, da wegen der geringen Sinkgeschwindigkeit staubfoermiger oder tropfenfoermiger Schadstoffe laengst alle Verbrennungsspuren o.ae. beseitigt sind, wenn am Erdboden die Immission erfolgt. Bei Ueberwachung der unteren 200 m der Atmosphaere koennen Emissionen aber sehr viel frueher bereits ermittelt werden. Bei radioaktiven Emissionen, z.B. bei Reaktorunfaellen, kann durch Messung in der unteren Atmosphaere die Konzentration schon so fruehzeitig erfasst werden, dass ggf. Raeumung der gefaehrdeten Gebiete noch moeglich ist.
| Origin | Count |
|---|---|
| Bund | 894 |
| Kommune | 2 |
| Land | 23 |
| Type | Count |
|---|---|
| Förderprogramm | 879 |
| Text | 10 |
| unbekannt | 24 |
| License | Count |
|---|---|
| geschlossen | 22 |
| offen | 890 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 874 |
| Englisch | 101 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 1 |
| Dokument | 4 |
| Keine | 647 |
| Unbekannt | 2 |
| Webdienst | 3 |
| Webseite | 264 |
| Topic | Count |
|---|---|
| Boden | 855 |
| Lebewesen und Lebensräume | 890 |
| Luft | 833 |
| Mensch und Umwelt | 911 |
| Wasser | 858 |
| Weitere | 913 |