<p>Standorte von Glascontainern im Stadtgebiet Münster<br /> <br /> In diesem Datensatz enthalten sind ca. 300 Standplätze. Jeder ist ausgestattet mit mindestens einem Weiß- und einem Grünglascontainer. In den Außenbezirken stehen häufig Drei-Kammer-Container. Sie besitzen noch eine zusätzliche Einwurföffnung für Braunglas. Im Datensatz ist der Spalte "Sorten" zu entnehmen, welche Container an welchem Standort stehen.<br /> <br /> Die Einwurfzeiten sind: Mo - Sa von 7 - 20 Uhr<br /> <br /> Beim Glas-Recycling werden die Glasscherben aus den Glascontainern zu einer Glasmasse eingeschmolzen, aus der neue Gläser produziert werden können. Das funktioniert aber nur, wenn das gesammelte Glas den gleichen Schmelzpunkt hat. Daher dürfen nur Einweggläser in die Glascontainer eingeworfen werden.</p> <p>Nicht in die Glascontainer gehören:<br /> Feuerfestes Glas, z. B. Auflaufformen, Einmachgläser, Kaffee- und Teekannen, Flachglas, Glühbirnen, Porzellan, Spiegel, Steingut.<br /> <br /> Stichworte: Altglascontainer, Altglasbehälter</p>
Das Projekt "Steigerung der Energieeffizienz bei der additiven Fertigung von Mikrobauteilen durch Einsatz eines heißdrahtbasierten Laserauftragschweißverfahrens, Teilvorhaben: Konstruktion und Fertigung eines Heißdrahtförderers sowie Sensordatenmanagement" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: EUTECT GmbH.Metallische Bauteile mit Strukturauflösungen von weniger als einem Millimeter werden in der Additiven Fertigung überwiegend mit pulverbasierten Verfahren hergestellt. Von den während der Bauteilgenerierung zugeführten Pulverpartikeln wird nur ein vergleichsweise geringer Anteil Teil der Bauteilgeometrie. Die erforderliche Energie für das Wiederaufbereiten sowie der Umstand, dass trotz Wiederaufbereitung nicht alle überschüssigen Pulverpartikel erneut verwendet werden können, sind bei pulverbasierten generativen Fertigungsverfahren zwei unvermeidliche Faktoren, die zusammen mit dem hohen Schutzgasbedarf deren Energieeffizienz und Ressourcenschonung limitieren. Hier knüpft das Vorhaben an und zielt auf die Entwicklung eines energieeffizienten Verfahrens zum Laserauftragschweißen mit metallischen Drähten im Durchmesserbereich von 100 µm ab. Dabei soll der Draht senkrecht zur Substratoberfläche zugeführt werden und von vier einzeln ansteuerbaren, auf einem koaxialen Ring um die Drahtlängsachse angeordneten Laserstrahlen aufgeschmolzen werden. Zusätzlich wird der Draht in der Prozesszone durch Widerstandserwärmung auf Temperaturen nahe des Schmelzpunktes erwärmt. Zusammen mit einer konsequent auf minimalen Energiebedarf ausgelegten Maschinensteuerung wird es mit diesem Verfahren möglich sein, dünnwandige Mikrobauteile mit einer gegenüber Konkurrenzverfahren um fast 60 % gesteigerten Effizienz zu fertigen. Bei EUTECT wird ein Heißdrahtfördersystem entwickelt, welches auf der einen Seite Feindrähte im Durchmesserbereich zwischen 50 µm und 100 µm prozesssicher fördern kann und auf der anderen Seite über eine Widerstandserwärmung verfügt, welche mit elektrischer Leistung von unter 7 W den Draht auf Temperaturen kurz unterhalb der Schmelztemperaturen erwärmen kann. Zusätzlich soll mit einer zu entwickelnden Kraftmesseinheit die mechanische Widerstandskraft auf den Draht während des Auftragschweißprozesses detektierbar sein.
Das Projekt "Steigerung der Energieeffizienz bei der additiven Fertigung von Mikrobauteilen durch Einsatz eines heißdrahtbasierten Laserauftragschweißverfahrens, Teilvorhaben: Errichtung des Versuchsstands und Entwicklung der Maschinensteuerung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: LASERVORM GmbH.Metallische Bauteile mit Strukturauflösungen von weniger als einem Millimeter werden in der Additiven Fertigung überwiegend mit pulverbasierten Verfahren hergestellt. Von den während der Bauteilgenerierung zugeführten Pulverpartikeln wird nur ein vergleichsweise geringer Anteil Teil der Bauteilgeometrie. Die erforderliche Energie für das Wiederaufbereiten sowie der Umstand, dass trotz Wiederaufbereitung nicht alle überschüssigen Pulverpartikel erneut verwendet werden können, sind bei pulverbasierten generativen Fertigungsverfahren zwei unvermeidliche Faktoren, die zusammen mit dem hohen Schutzgasbedarf deren Energieeffizienz und Ressourcenschonung limitieren. Hier knüpft das Vorhaben an und zielt auf die Entwicklung eines energieeffizienten Verfahrens zum Laserauftragschweißen mit metallischen Drähten im Durchmesserbereich von 100 µm ab. Dabei soll der Draht senkrecht zur Substratoberfläche zugeführt werden und von vier einzeln ansteuerbaren, auf einem koaxialen Ring um die Drahtlängsachse angeordneten Laserstrahlen aufgeschmolzen werden. Zusätzlich wird der Draht in der Prozesszone durch Widerstandserwärmung auf Temperaturen nahe des Schmelzpunktes erwärmt. Zusammen mit einer konsequent auf minimalen Energiebedarf ausgelegten Maschinensteuerung wird es mit diesem Verfahren möglich sein, dünnwandige Mikrobauteile mit einer gegenüber Konkurrenzverfahren um fast 60 % gesteigerten Effizienz zu fertigen. Die Entwicklungstätigkeiten des Antragstellers im Teilvorhaben zielen dabei auf die energieverbrauchsoptimierte Regelung der Anlagenkomponenten wie Laserstrahlquellen, Drahtfördersystem, Vorwärmsystem und Bewegungssystem.
Das Projekt "Steigerung der Energieeffizienz bei der additiven Fertigung von Mikrobauteilen durch Einsatz eines heißdrahtbasierten Laserauftragschweißverfahrens" wird/wurde ausgeführt durch: LASERVORM GmbH.Metallische Bauteile mit Strukturauflösungen von weniger als einem Millimeter werden in der Additiven Fertigung überwiegend mit pulverbasierten Verfahren hergestellt. Von den während der Bauteilgenerierung zugeführten Pulverpartikeln wird nur ein vergleichsweise geringer Anteil Teil der Bauteilgeometrie. Die erforderliche Energie für das Wiederaufbereiten sowie der Umstand, dass trotz Wiederaufbereitung nicht alle überschüssigen Pulverpartikel erneut verwendet werden können, sind bei pulverbasierten generativen Fertigungsverfahren zwei unvermeidliche Faktoren, die zusammen mit dem hohen Schutzgasbedarf deren Energieeffizienz und Ressourcenschonung limitieren. Hier knüpft das Vorhaben an und zielt auf die Entwicklung eines energieeffizienten Verfahrens zum Laserauftragschweißen mit metallischen Drähten im Durchmesserbereich von 100 µm ab. Dabei soll der Draht senkrecht zur Substratoberfläche zugeführt werden und von vier einzeln ansteuerbaren, auf einem koaxialen Ring um die Drahtlängsachse angeordneten Laserstrahlen aufgeschmolzen werden. Zusätzlich wird der Draht in der Prozesszone durch Widerstandserwärmung auf Temperaturen nahe des Schmelzpunktes erwärmt. Zusammen mit einer konsequent auf minimalen Energiebedarf ausgelegten Maschinensteuerung wird es mit diesem Verfahren möglich sein, dünnwandige Mikrobauteile mit einer gegenüber Konkurrenzverfahren um fast 60 % gesteigerten Effizienz zu fertigen. Die Entwicklungstätigkeiten des Antragstellers im Teilvorhaben zielen dabei auf die energieverbrauchsoptimierte Regelung der Anlagenkomponenten wie Laserstrahlquellen, Drahtfördersystem, Vorwärmsystem und Bewegungssystem.
Das Projekt "Steigerung der Energieeffizienz bei der additiven Fertigung von Mikrobauteilen durch Einsatz eines heißdrahtbasierten Laserauftragschweißverfahrens, Teilvorhaben: Konstruktion und Fertigung des koaxialen Laserauftragschweißkopfes und Laserprozessentwicklung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Laser Zentrum Hannover e.V..Metallische Bauteile mit Strukturauflösungen von weniger als einem Millimeter werden in der Additiven Fertigung überwiegend mit pulverbasierten Verfahren hergestellt. Von den während der Bauteilgenerierung zugeführten Pulverpartikeln wird nur ein vergleichsweise geringer Anteil Teil der Bauteilgeometrie. Die erforderliche Energie für das Pulverwiederaufbereiten sowie der Umstand, dass trotz Wiederaufbereitung nicht alle überschüssigen Pulverpartikel erneut verwendet werden können, sind bei pulverbasierten generativen Fertigungsverfahren zwei unvermeidliche Faktoren, die zusammen mit dem hohen Schutzgasbedarf deren Energieeffizienz und Ressourcenschonung limitieren. Hier knüpft das Vorhaben an und zielt auf die Entwicklung eines energieeffizienten Verfahrens zum Laserauftragschweißen mit metallischen Drähten im Durchmesserbereich von 100 µm ab. Dabei soll der Draht senkrecht zur Substratoberfläche zugeführt werden und von vier einzeln ansteuerbaren, auf einem koaxialen Ring um die Drahtlängsachse angeordneten Laserstrahlen aufgeschmolzen werden. Zusätzlich wird der Draht in der Prozesszone durch Widerstandserwärmung auf Temperaturen nahe des Schmelzpunktes erwärmt. Zusammen mit einer konsequent auf minimalen Energiebedarf ausgelegten Maschinensteuerung wird es mit diesem Verfahren möglich sein, dünnwandige Mikrobauteile mit einer gegenüber Konkurrenzverfahren um fast 60 % gesteigerten Effizienz zu fertigen. Im Teilvorhaben ist einerseits beabsichtigt, einen Laserbearbeitungskopf zu entwickeln. Dieser umfasst vier einzelne Strahlquellen sowie eine geeignete Strahlführung. Der Bearbeitungskopf verfügt zudem über eine mechanische Schnittstelle zur Aufnahme eines Drahtvorschubs. Anderseits werden in diesem Teilvorhaben Auftragschweißprozesse im Laboraufbau und im Versuchsstand eines Projektpartners unter industriellen Bedingungen entwickelt. Der Nachweis der industrienahen Einsetzbarkeit soll anhand der Fertigung anwendungstypischer Demonstratorbauteile erfolgen.
Das Projekt "Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile, KMU-innovativ - SLSElasto - Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: phoenix GmbH & Co. KG.
Das Projekt "Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile, KMU-innovativ - SLSElasto - Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Lasertechnik.
Das Projekt "Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile, KMU-innovativ - SLSElasto - Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Launhardt GmbH.
Das Projekt "Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile" wird/wurde ausgeführt durch: Launhardt GmbH.
Das Projekt "Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile, KMU-innovativ - SLSElasto - Funktionalisierung eines neuartigen thermoplastischen Polyurethanpulvers für das Selektive Lasersintern elastischer Bauteile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: rpm rapid product manufacturing GmbH.
Origin | Count |
---|---|
Bund | 79 |
Land | 1 |
Type | Count |
---|---|
Chemische Verbindung | 4 |
Förderprogramm | 68 |
Text | 5 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 10 |
offen | 69 |
Language | Count |
---|---|
Deutsch | 75 |
Englisch | 15 |
Resource type | Count |
---|---|
Keine | 44 |
Webseite | 35 |
Topic | Count |
---|---|
Boden | 47 |
Lebewesen & Lebensräume | 47 |
Luft | 38 |
Mensch & Umwelt | 79 |
Wasser | 30 |
Weitere | 79 |