API src

Found 1310 results.

Related terms

Monthly mean snow depth: maps

Maps of monthly mean snow depth derived from SYNOP observations on a 0.1x0.1 degree grid, provided by WMO RA VI Regional Climate Centre (RCC) on Climate Monitoring WMO-RA6-RCC-CM

Meteogramm bis H+168 München - Meteogram up to H+168 Munich

7 Tage Vorhersage. Wind, Temperatur, Niederschlag, Schneehöhe, Bodendruck und Bedeckung - 7 days forecast. Wind, temperature, precipitation, depth of snow, air pressure and cloud cover

Spatially modelling forest trafficability with ForHym and LiDAR-based cartographic depth-to-water

The thesis proposal deals with mapping weather-affected changes in soil moisture over time. This is to visualize where and when soils would be subject to severe rutting and compaction under forest operations. The approach taken is modular by connecting temporal hydrothermal processes dealing with soil wetting, drying, freezing, and thawing to spatially anticipated locations of dry versus wet soil drainage conditions. The temporal variations within specific textured soils can be modeled at daily resolution based on air temperature, and precipitation (rain, snow) data. This is done with the Forest Hydrology Model (ForHyM). The spatial variations can be derived from LiDAR-generated bare-ground elevation surfaces at 1 m resolution by way of the newly developed metric depth-to-water index (DTW), for which DTW less than 10 , 10-25, 25-50, 50-100, greater than 100 cm indicates very poor, poor, imperfect, moderately well and well drainage conditions, respectively. The results of doing so will be illustrated for forested areas in Northern and Central New Brunswick in reference to actual forest harvesting and wood forwarding tracks. The attempt is to generalize the methodology for weather-dependent and geospatially base forecasting of soil conditions to better enable forest operation planning as seasons change from dry to wet and from wet to dry within seasons and from year to year.

Research group (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons

The exchange of water between atmosphere, biosphere, and hydrosphere is a result of complex interactions and feedback mechanisms, where soil moisture acts as the key state variable. Novel approaches are required to handle the related scale dependency of water fluxes. Corresponding state-of-the-art methods for observing soil moisture range from continuous point-scale measurements, via field-scale temporal snapshots to remote sensing products on the basin scale and beyond. Cosmic-ray neutron sensing (CRNS) constitutes a considerable advancement in this context by inferring soil moisture from changes in ambient neutron density above the ground, allowing for the integration across hundreds of meters. In this proposal we report on the activities and achievements of the Cosmic Sense research unit (RU) in its first phase, and give an outline of the objectives and the work program for the second phase. The overarching goal remains the development of a quantitative, adaptable, and transferable approach for observing root-zone soil moisture on the field scale while accounting for other dynamic water pools, such as biomass. New to phase II is the addition of snow water pools and the focus on the regional scale by soil moisture mapping with sensor clusters, mobile detectors, remote sensing, and modeling. Cosmic Sense continues to constitute a driving force in the field of soil moisture measurements via CRNS and will strengthen an engaged and innovative community. Our team will advance the understanding of field-scale and regional water storage and fluxes in the soil-vegetation-atmosphere continuum by bundling the expertise of distinguished partners in complementary research modules and joint activities. Working together towards joint research objectives requires intensive interaction in the team as well as overarching coordination and support. The coordination project “Z” acts as a central nexus for the objectives, resources, and outreach activities that are related to the RU as a whole. The key personal resources required are a position for the coordination of meetings, workshops, and general RU matters, and a field technician to support the joint field- and cross-cutting activities. Furthermore, Z strives to support young researchers – particularly those with children – in their work and career, and to enhance gender equality. Z will also promote the outcomes of the RU in a closing workshop, inviting external keynote speakers and supporting attendance via discounts and scholarships. The current and designated Mercator Fellow, Prof. Marek Zreda, will interact with all research modules, he will actively participate in the cross-cutting activities and promote the achievements of Cosmic Sense to the scientific community worldwide. Accordingly, all of the tasks planned in Z will support and interact with the involved research modules of the RU, thus helping to promote the collaboration within the RU and of the dissemination of its outcomes beyond it.

GTS Bulletin: ISND40 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND40 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere (Remarks from Volume-C: NilReason)

Meteogramm bis H+168 Saarbrücken - Meteogram up to H+168 Saarbrücken

7 Tage Vorhersage. Wind, Temperatur, Niederschlag, Schneehöhe, Bodendruck und Bedeckung - 7 days forecast. Wind, temperature, precipitation, depth of snow, air pressure and cloud cover

Monthly maximum snow depth: maps

Maps of monthly maximum snow depth derived from SYNOP observations on a 0.1x0.1 degree grid, provided by WMO RA VI Regional Climate Centre (RCC) on Climate Monitoring WMO-RA6-RCC-CM

Meteogramm bis H+168 10418 Lüdenscheid - Meteogram up to H+168 10418 Lüdenscheid

7 Tage Vorhersage. Wind, Temperatur, Niederschlag, Schneehöhe, Bodendruck und Bedeckung - 7 days forecast. Wind, temperature, precipitation, depth of snow, air pressure and cloud cover

Meteogramm bis H+168 10655 Würzburg - Meteogram up to H+168 10655 Würzburg

7 Tage Vorhersage. Wind, Temperatur, Niederschlag, Schneehöhe, Bodendruck und Bedeckung - 7 days forecast. Wind, temperature, precipitation, depth of snow, air pressure and cloud cover

Forschungsgruppe FOR 2793: Sensitivity of High Alpine Geosystems to Climate Change Since 1850 (SEHAG), Auswirkungen des Klimawandels auf hydrologische Prozesse in hochalpinen Einzugsgebieten

Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.

1 2 3 4 5129 130 131