API src

Found 123 results.

Related terms

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Experimentelle Untersuchung einer Anlage zur integrierten Pyrolyse und Verbrennung von Biomasse

Hauptproblematik bei der Umsetzung von Vergasungsverfahren für Biomassen stellen nach wie vor die im Produktgas enthaltenen höheren Kohlenwasserstoffe dar. Ziel der Entwicklung des IPV-Verfahrens ist es, ein preisgünstiges Verfahren zur energetischen und rohstofflichen Nutzung von Biomassen und biogenen Reststoffen zu entwickeln, das die Vorbehandlung auf ein Minimum reduziert, ein hochwertiges, nicht mit Inertgasen verdünntes Produktgas erzeugt, dabei mit möglichst einfacher Anlagentechnik robust ist und eine hohe Verfügbarkeit aufweist. Das Verfahren beinhaltet die Kopplung eines Pyrolyse- und eines Verbrennungsprozesses. Das entstehende weitgehend teerfreie Synthesegas kann rohstofflich oder energetisch verwendet werden.

Entwicklung eines innovativen Adsorptionsmittels auf Kohlenstoffbasis zur Reinigung wasserstoffhaltiger Gase als ein Baustein der Wasserstoffwirtschaft, Teilprojekt: Wissensbasierte Entwicklung von Aktivkohlen speziell zur Wasserstoffabtrennung

Entwicklung eines innovativen Adsorptionsmittels auf Kohlenstoffbasis zur Reinigung wasserstoffhaltiger Gase als ein Baustein der Wasserstoffwirtschaft, Teilprojekt: Ingenieurtechnische Begleitung der Entwicklungen aus Anwendersicht sowie Konzepterstellung zur Verfahrensumsetzung

Reduktion von Schweißrauchemissionen beim MSG-Schweißen durch Nutzung alternativer Schutzgase und Schweißzusätze

Entwicklung eines Wasserstoffbrennverfahrens in Industriemotoren zur Dekarbonisierung von BHKW, Teilvorhaben: Grundlagenforschung zur Wasserstoff-Direkteinblasung in der motorischen Anwendung

LIB Elektrolytrecycling aus Lithiumionen-Batterien zur Schließung von Wertstoffströmen, ElRec - LIB Elektrolytrecycling aus Lithiumionen-Batterien zur Schließung von Wertstoffströmen

Entwicklung eines innovativen Adsorptionsmittels auf Kohlenstoffbasis zur Reinigung wasserstoffhaltiger Gase als ein Baustein der Wasserstoffwirtschaft, Teilvorhaben DBI: Technischer Nachweis der Funktionsfähigkeit sowie verfahrenstechnische Optimierung der Performance der Aktivkohlen

ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode, ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode

Hocheffiziente Herstellung von edelmetallfreiem Legierungspulver für medizintechnische Anwendung

Die S&S Scheftner GmbH ist ein Hersteller von Dentallegierungen mit Sitz in Mainz. Das 1986 gegründete Unternehmen ist ein KMU und beschäftigt 20 Mitarbeiter. Das Unternehmen verkauft jährlich 60 Tonnen Legierungen für dentale Anwendungen weltweit. Bisher bezieht der Hersteller Legierungspulver von Vorlieferanten aus der Industrie, die das Pulver in einer breiten Korngrößenverteilung fertigen. Die maximale Korngröße liegt, je nach Produktionsverfahren, bei etwa 150 Mikrometer. Allerdings können bei der dentalen Anwendung mittels selektivem Laserschmelzverfahren nur Korngrößen bis 65 Mikrometer verarbeitet werden. Somit müssen die größeren Partikel aus einer Charge als nicht verwertbarer Materialauschuss eingestuft werden. Mit dem geplanten Vorhaben wird das Unternehmen bestimmte Legierungspulver zukünftig direkt in der für Dentallegierungen benötigten Pulverkorngröße erzeugen. Dafür soll ein neuartiges Pulverherstellungsverfahren eingesetzt werden, das sehr feine Körner in einer engen Verteilung erzeugen kann. Durch das neue Verfahren wird die nutzbare Pulverausbeute um etwa 50 Prozent gesteigert. Verbleibender Ausschuss kann wiederverwendet werden. Der Einsatz von Schutzgasen verringert sich auf ein Drittel des aktuellen Verbrauchs. Insgesamt soll so eine CO 2 -Reduzierung von fast 50 Prozent erreicht werden. Branche: Sonstiges verarbeitendes Gewerbe/Herstellung von Waren Umweltbereich: Ressourcen Fördernehmer: S&S Scheftner GmbH Bundesland: Rheinland-Pfalz Laufzeit: seit 2020 Status: Laufend

1 2 3 4 511 12 13