API src

Found 487 results.

Similar terms

s/schwallwellen/Schallwellen/gi

Knall und Schall - Physikalische und biologische Phänomene im Ohr beim Hören

Was würde uns alles in einer Welt ohne Geräusche, ohne Sprache und Musik entgehen? Wie entstehen die unterschiedlichen Töne, wie breiten sie sich aus und erreichen unser Ohr? Wie hören wir eigentlich? Kann uns zuviel Lärm krank machen und unser Gehör schädigen? In diesem Buch soll auf diese und andere Fragen näher eingegangen werden. Es wird erklärt, wie Töne entstehen, wie sie übertragen werden und schließlich, wie unsere Ohren Töne wahrnehmen und verarbeiten können. Veröffentlicht in Broschüren.

Flyer - Erkundung des Untergrunds der Asse - Informationen zur 3D-Seismik (PDF, 2,03 MB)

3D-seismische Messungen im Gebiet der Asse Ihr Ansprechpartner für Betretungsrechte IPS Informations & Planungsservice GmbH Telefon: 0174 7459089 E-Mail: asse@ips-celle.de Detailliertere Kenntnisse sind das Ziel Mit Hilfe der Seismik ist es möglich, die Struktur des Untergrundes von der Oberfläche aus zu untersuchen und räumlich abzubilden. Damit werden detaillierte Kenntnisse über die geologische Struktur gewonnen. Bisher liegen hierzu keine gesicherten Informationen vor. Da die Schachtanlage Asse II für die Rückholung noch viele Jahre sicher betrieben werden muss, sind möglichst genaue Kenntnisse des Untergrundes notwendig. Die geplanten Messungen sind eine Voraussetzung für die Sicherheitsanalysen, die zur Rückholung erstellt werden müssen. Um die Durchführung der Messungen zu optimieren, hat das Bundesamt für Strahlenschutz im Jahr 2013 bereits eine Testmessung im Bereich der Asse durchgeführt. Für die 3D-Seismik ist nun eine 37,5 Quadratkilometer große Messfläche vorgesehen. Ausdehnung Schachtanlage Asse II auf der 750-Meter-Ebene bewaldeter Bereich im Höhenzug Asse Messfläche mit den Zonen A, C, D Dettum Die Messpunktdichte nimmt von A nach D ab Weferlingen Weitere Informationen zur 3D-Seismik finden Sie im Internet unter www.bge.de/seismik Informationen zur 3D-Seismik Bundes-Gesellschaft für Endlagerung mbH (BGE) Eschenstraße 55 31224 Peine T: 05171 43-0 poststelle@bge.de D Mönchevahlberg Groß Denkte C Groß Vahlberg Wittmar A Sottmar C Remlingen D Groß Biewende Klein Vahlberg Stand: Juli 2019 Gestaltung: Quermedia GmbH, Kassel Druck: Druckerei Grunenberg GmbH, Schöppenstedt Geschäftsführung: Stefan Studt (Vors.) Beate Kallenbach-Herbert Steffen Kanitz Dr. Thomas Lautsch Vorsitzender des Aufsichtsrats: Staatssekretär Jochen Flasbarth Handelsregister: AG Hildesheim (HRB 204918) Klein Biewende Semmenstedt ERKUNDUNG DES UNTERGRUNDS DER ASSE Die einzelnen Schritte der 3D-seismischen MessungenAblauf der Messungen vor Ort Planung1. Einwilligung der Grundeigentümer Alle benötigten Zugangs- und Wegenutzungsrechte im Messgebiet werden eingeholt. Die 3D-seismischen Messungen sind für 2019/2020 geplant. Die BGE führt im Vorfeld mehrere öffent- liche Informationsveranstaltungen zum Ablauf des Messverfahrens durch. Bevor die Messungen beginnen können, müssen sowohl die notwendigen behördli- chen Genehmigungen und die Einwilligungen der Grundstückseigentümer vorliegen, als auch das Aus- schreibungsverfahren und die Auftragsvergabe abge- schlossen sein. Erfahrungsgemäß dauern die Messungen in der Nähe eines Hauses rund eine Woche. Die Eigen- tümer werden rechtzeitig über den genauen Termin informiert. Wie eine seismische Messung funktioniert und wie die Messungen vor Ort ablaufen, erklärt die Grafik auf dieser Seite. 2. Vermessung und Auslage der Geophone Die ausgewählten Messpunkte (Sende- und Empfangspunkte) werden von Vermessern markiert. Die Geophone werden entlang der Messlinien aus- gelegt. So wie Mikrophone Geräusche aufnehmen, werden durch Geophone Bodenschwingungen auf- gezeichnet. 3. Errichtung von Bohrlöchern Bei Bedarf werden kleine Bohrlöcher mit kleinsten, sorgfältig dosierten Explosivladungen befüllt und sicher verschlossen. 4. Seismische Messungen Vibrationsfahrzeuge oder kleine Sprengladungen erzeugen an den Sendepunkten die Schallwellen, die von den Geophonen registriert und gespeichert werden. 5. Abbau und Aufräumen Nach Abschluss der Messungen werden die Geophone und das weitere Messequipment wieder vollständig abgebaut. 4 5 3 Nach den Messungen 2 1 So funktioniert eine seismische Messung: An der Erdoberfläche werden schwache Schallwellen erzeugt (zum Beispiel mit Vibra- tionsfahrzeugen oder kleinen Sprengungen). Diese werden von den einzelnen Gesteinsschichten im Un- tergrund zurück an die Oberfläche reflektiert und dort von Geophonen aufgenommen. Anschließend liefert die Interpretation der Ergebnisse ein detailliertes dreidimensionales Bild des Untergrundes. Geophone Nach Abschluss der Messungen vor Ort werden die aufgenommenen Daten weiter bearbeitet und interpretiert. Am Ende dieses Prozesses steht eine detaillierte dreidimensionale Abbil- dung der geologischen Struktur des Gebietes. Keine Gefahr für Mensch, Tier und Umwelt Seismische Wellen sind für Mensch und Tier kaum wahrnehmbar und ungefährlich. Auf spezielle Belange des Umweltschutzes wird Rücksicht genommen. Sollten Schäden ent- stehen – beispielsweise durch das Befahren eines Feldes mit schweren Baufahrzeugen – werden diese erstattet.

BGE stellt Messergebnisse der 3D-Seismik Asse vor

Rund 100 Besucher*innen wollten sich den Blick in die Geologie im Umfeld der Schachtanlage Asse II nicht entgehen lassen. Sie verfolgten am 23. Mai die Vorstellung der Ergebnisse der 3D-Seismik in der jüngsten Ausgabe des Veranstaltungsformats „Betrifft: Asse“ wahlweise online oder vor Ort im Waldhaus zur Asse in Wittmar. Die 3D-Seismik spielt für die Arbeit der BGE im Projekt Asse eine wichtige Rolle: Unter anderem auf Basis der aus der 3D-Seismik gewonnenen Ergebnisse wird ein geologisches Strukturmodell der Asse erstellt. Maximilian Scholze und Dr. Christian Buxbaum-Conradi, beide BGE Abteilung Geowissenschaften, informierten in ihren Vorträgen über die Arbeiten und beantworteten Fragen aus dem Publikum. Zunächst aber gab Jens Köhler, Bereichsleiter Asse, einen kurzen Überblick zum aktuellen Projektstatus. Dieser umfasste etwa die Vorbereitungsmaßnahmen im Bereich des geplanten Bohrplatzes Remlingen 18 (R 18), die b ohrtechnische Erkundung der Einlagerungskammer 12 und den veränderten Lösungszutritt auf der 658-Meter-Ebene. Aufzeichnung der Veranstaltung auf YouTube (externer Link) Vortragsfolien zur Veranstaltung (PDF, 7,1 MB) 3D-Animation des geologischen Modells der Asse (GIF, 76 MB) Messungen per Schallwellen Um ein detailliertes geologisches Modell der Asse erstellen zu können, ließ die BGE in den Wintermonaten 2019/2020 rund um die Schachtanlage 3D-seismische Messungen durchführen. Dabei wurden auf einer Fläche von rund 37 Quadratkilometern von mehr als 36.000 Punkten Schallwellen in den Boden gesandt. Diese wurden von den unterschiedlichen Gesteinsschichten reflektiert und anschließend an der Tagesoberfläche von sogenannten Geophonen aufgezeichnet. Aus den gesammelten Daten kann ein belastbares 3D-Modell des geologischen Untergrundes erstellt werden und es lassen sich wichtige Erkenntnisse für den Bau des Schachtes Asse 5 sowie des Rückholbergwerks gewinnen. Wie die 3D-Seismik umgesetzt wurde, erklärt ein kurzer Film auf YouTube (externer Link) . Riesige Datenmengen Maximilian Scholze erläuterte in seinem Vortrag den Weg von den Rohdaten bis hin zu einer verwertbaren Abbildung des geologischen Untergrundes. Insgesamt wurden bei der 3D-Seismik rund 590 Terabyte Rohdaten erzeugt, die im Verlauf der Bearbeitung auf 28 Terabyte reduziert wurden. Mit Hilfe verschiedener Bearbeitungsmethoden wurden die nutzbaren Signale hervorgehoben, störende Einflüsse Schritt für Schritt entfernt und schließlich ein Abbild des Untergrunds erzeugt. Anhand verschiedener Darstellungen konnten das Publikum miterleben, wie sich ein immer deutlicheres Bild des Untergrundes abzeichnete. Basis für weitere Modelle Doch was bedeuten diese Ergebnisse? Dr. Christian Buxbaum-Conradi erläuterte die Interpretation der Daten hin zur Entwicklung eines geologischen 3D-Strukturmodells. Neben den Ergebnissen der 3D-Seismik wird dabei auch auf Ergebnisse verschiedener Tief- und Flachbohrungen von über und unter Tage zurückgegriffen sowie auf die Kartierung der Oberfläche. Das so erzeugte Modell liefert ein belastbares Abbild des gesamten Gebirges im Bereich der Schachtanlage Asse II. Neben Informationen über den geologischen Aufbau und die darin enthaltenen Strukturen, dient das Modell unter anderem als Basis zur weiteren Erstellung von geomechanischen und hydrogeologischen Modellen. Zusätzlich liefert das Strukturmodell wichtige Erkenntnisse für die Planung und Umsetzung der untertägig zu erstellenden Infrastruktur des Rückholbergwerks. Unerwartete Erkenntnisse Als wichtige Erkenntnis bezeichnete Dr. Buxbaum-Conradi, dass die sogenannte Salzumhüllende an beiden Flanken steiler einfällt als vor der Auswertung vermutet. Bei der Salzumhüllenden handelt es sich um den Übergang des Salzgesteins zum darüber liegenden Deckgebirge. Weiterhin taucht die Salzstruktur von Westen nach Osten ab. Neu ist auch, dass sich die Südflanke über die Nordflanke schiebt. Zuvor wurde genau das Gegenteil vermutet. Abschließend wies der Referent darauf hin, dass die Ergebnisse aus den 3D-seismischen Messungen die Erwartungen übertroffen und ein besseres Verständnis über den Aufbau der Salzstruktur geliefert haben. Gleichzeitig stecke weiteres Potenzial in der Verbesserung der seismischen Abbildung und des aktuellen Modells. Die Daten werden entsprechend kontinuierlich weiterbearbeitet und es werden verschiedene ergänzende Auswertungen vorgenommen. Gezielte Maßnahmen wie zum Beispiel unter- und übertägige Erkundungsbohrungen sowie begleitende geophysikalische Messungen in den Bohrungen werden das Verständnis des Strukturaufbaus der Asse weiter verbessern. Fragerunde online und vor Ort Nach Abschluss der Vorträge nutzten Teilnehmer*innen die Möglichkeit, den Referenten ihre Fragen zu stellen. Für weitere Fragen im Nachgang steht das Team der Infostelle Asse gerne weiterhin zur Verfügung. Nachfragen richten Sie bitte per E-Mail an dialog(at)bge.de .

Umweltgerechtigkeit Berlin 2021/2022

Inhaltliche Herangehensweise Der Berliner Ansatz der Bewertung der Umweltgerechtigkeit beruht im Wesentlichen auf der Auswertung und Aggregation vorhandener Daten. Er ist als zweistufiges Verfahren mit fünf Kernindikatoren : Lärmbelastung Luftbelastung Thermische Belastung Grünversorgung Soziale Benachteiligung und drei die Einzelbewertungen zusammenführenden Mehrfachbelastungskarten : Mehrfachbelastungskarte Umwelt Mehrfachbelastungskarte Umwelt und Soziales und Berliner Umweltgerechtigkeitskarte konzipiert. „Bei der Zusammenführung dieser Datenquellen sind drei besondere Herausforderungen auszumachen: Die sektoralen Daten unterscheiden sich in ihrer Erhebungsmethodik, in ihrer räumlichen Tiefe und in ihrer Periodizität. Als kleinste Analyseeinheit für den Umweltgerechtigkeitsatlas wurde der stadtentwicklungspolitische Planungsraum aus dem System der Lebensweltlich orientierten Raume gewählt, auf den die sektoralen Daten dann umgerechnet wurden. So konnte die heterogene Datenlage hinsichtlich der Erhebungsmethodik und der räumlichen Tiefe für die Zwecke dieser Analyse entschärft werden“ (SenUMVK 2022, S. 6). In einem ersten Schritt des Analyseverfahrens wurden die Daten zu den drei Kernindikatoren Luft-, Lärm- und Thermische Belastung analysiert und entsprechend dem gesundheitlichen Belastungsrisiko einheitlich in die ordinalskalierten Merkmale „hoch“, „mittel“, oder „gering“. eingestuft. Die Einstufung der weiteren Kernindikatoren “Grünflächenversorgung” und “Soziale Problematik” erfolgte analog in drei Klassenstufen, jedoch ohne eine gesundheitliche Gewichtung. Im zweiten Schritt wurden die individuellen monothematischen Kernindikatoren-Karten zusammengeführt, um die Verteilung bzw. Überlagerung der Umweltbelastungen („Integrierte Mehrfachbelastungskarte Umwelt“) sowie der Umweltbelastungen einschließlich der Sozialen Benachteiligung („Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung“) darzustellen. Die beiden Karten zeigen auf der Ebene der Planungsräume die Spannbreite von PLR ohne starke Belastung auch nur eines der Kernindikatoren bis zu den PLR mit 4fach- bzw. 5fach-Belastungen (vgl. Abb. 2). Damit wurde für jeden Planungsraum der Mehrfachbelastungsfaktor durch Summierung derjenigen Kernindikatoren ermittelt, die der Kategorie 3 („niedrig“/“schlecht“/“hoch”) zugeordnet wurden. Anzahl und Verteilung der mehrfach belasteten Räume sowie die verursachenden Belastungen sind somit nachvollziehbar und transparent. Diese Statusbestimmung durch das zweistufige Berliner Umweltgerechtigkeitsmonitoring stellt somit einen Überblick über die Umweltqualität in den 542 Planungsräumen der Stadt – und zukünftig auch im Vergleich zu den Analysen der vorherigen Jahrgänge – zur Verfügung. Als Lärm werden Schallereignisse beschrieben, die durch ihre individuelle Ausprägung als störend und/oder belastend für Wohlbefinden und Gesundheit wahrgenommen werden. Lärm kann insbesondere im städtischen Raum als ein zentraler, die Gesundheit beeinträchtigender Faktor benannt werden. Lärmimmissionen können je nach Expositionsumfang, -zeitraum und -dauer direkte und indirekte gesundheitliche Wirkungen nach sich ziehen. Die Datenbasis für die Angaben zur Lärmbelastung der Planungsräume waren die Strategischen Lärmkarten für den Ballungsraum Berlin für das Jahr 2017, welche entsprechend den Anforderungen der 34. Bundesimmissionsschutzverordnung (BlmSchV) und europarechtlichen Vorgaben erarbeitet wurden. Gemäß § 47c Bundes-Immissionsschutzgesetz (BImSchG) sind Lärmkarten alle fünf Jahre zu überprüfen und bei Bedarf zu aktualisieren. Alle Lärmkarten des Erfassungsjahres 2017 sind im Geoportal des Landes Berlin veröffentlicht (Schlagwortsuche „Lärmkartierung“). Für die Bewertung der Lärmbelastung im Rahmen des Umweltgerechtigkeitsansatzes wurde die Gesamtlärmkarte „Strategische Lärmkarte Fassadenpegel Gesamtlärm L_N (Nacht) 2017 (Umweltatlas)“ herangezogen, diese stellt über die Anforderungen der Umgebungslärmrichtlinie hinaus eine summarische Betrachtung (Pegeladdition) der untersuchten Verkehrslärmquellen für die Zeit der Nachtstunden (22:00 bis 06:00) dar. „Dazu wurden die Nachtwerte der Lärmpegel jedes Fassadenpunktes mit den zugehörigen Personenzahlen herangezogen und für die jeweiligen Planungsraume aufsummiert, sodass mit Hilfe der Gesamtbevölkerungszahl eines Planungsraumes ein (personen-)gewichteter Mittelwert der Lärmwerte für jeden Planungsraum erzeugt werden konnte“ (SenUMVK 2022). Um die ermittelten Mittelwerte je Planungsraum den drei Bewertungskategorien „Belastung gering, mittel, hoch“ zuzuordnen, fand eine quartilsbezogene Unterteilung statt. Die besten 25% der Werte wurden von allen personen- und planungsraumbezogenen nächtlichen Mittelwerten bis 41,8 dB(A) eingenommen, die schlechtesten 25% lagen über dem Schwellenwert von 44,5 dB(A) (vgl. Abb. 3). Zur Bewertung der lufthygienischen Belastung gelten die beiden Stoffe Partikel (PM 2,5 ) und Stickstoffdioxid (NO 2 ) trotz der erreichten immissionsmindernden Erfolge (vgl. Umweltatlas-Karte 03.12.1 „Langjährige Entwicklung der Luftqualität“ ) weiterhin als gesundheitlich relevant und wurden daher auch in diesem Kontext zur Bewertung herangezogen. Im Zuge der Auswertungen und Verschneidung mit den Planungsräumen fand eine Konzentration auf den Schadstoff NO 2 statt, da dieser sehr viel stärker von lokalen Berliner Quellen beeinflusst wird und mithin auch lokal beeinflussbar ist. „Da NO 2 räumlich sehr viel stärker variiert, wurden hier anhand einer Landnutzungs- Regressionsanalyse unter Berücksichtigung der Bebauungsstruktur (Geschossflächenzahl und Grundflächenzahl) und des Verkehrsaufkommens die Daten der mittlerweile fast fünfzig NO 2 -Messpunkte statistisch auf einem regelmäßigen 100-Meter-Raster interpoliert. Diese Methode gibt die räumliche Struktur des NO 2 -Feldes sehr gut wieder“ (SenUMVK 2022). Aus den NO 2 -Daten wurden, vergleichbar dem Vorgehen bei der Lärmbelastung, für jeden Planungsraum flächengewichtete Mittelwerte berechnet und diese den vier gleich großen Quartilen zugeordnet. Die entscheidenden Grenzen zur Bestimmung der Belastungskategorien „gering“ bzw. „hoch“ befinden sich ebenfalls bei 25 und 75% der Daten (vgl. Abb. 4). Als Grundlage zur Bewertung des Einflussfaktors „sommerlicher Hitzestress“ wurden die Analysedaten des Klimamodells Berlin 2015 genutzt, die in einem Raster von 10*10 m² vorliegen. Dabei wurde – in Abänderung des methodischen Vorgehens im Pilotvorhaben 2008-2015 – in eine Bewertung der Situation am Tage zum Zeitpunkt des Sonnenhöchststandes (14:00 Uhr) und einen Bewertungszeitpunkt in der Nacht (04:00) unterschieden. Diese Zweiteilung wurde mit Blick auf die menschliche Gesundheit vorgenommen, da bei der Bewertung der lokalen bioklimatischen Situation vor allem diese Beurteilungskriterien besonders wichtig sind: Grad der Hitzebelastung am Tage Potenzial einer ausreichenden nächtlichen Abkühlung und Vorhandensein räumlich naher Erholungsräume. „Zur Bewertung der thermischen Behaglichkeit am Tage wird dabei der bioklimatische Index PET (Physiologisch Äquivalente Temperatur) herangezogen. Er stellt einen wissenschaftlichen Standard dar, der die wichtigsten auf den Körper wirkenden meteorologischen Einflussfaktoren berücksichtigt und seine Angaben in Grad Celsius (°C) liefert, die einzelnen thermischen Belastungsstufen zugeordnet werden können“ (SenUMVK 2022, S. 9). Für die Bewertung der Nachtsituation wurde aus fachlichen Gründen (in der Nacht fehlt die Sonneneinstrahlung als eine wichtige Teilkomponente zur Nutzung des PET) auf die modellierte Verteilung der Lufttemperatur zurückgegriffen. Zentraler Transformationsansatz zur Standardisierung der Modelldaten zum PET und zur Lufttemperatur war das statistische Verfahren der Z-Transfomation. Dieses hat den Vorteil, eine auf das Untersuchungsgebiet, hier Berlin, zugeschnittene Vergleichbarkeit von Werten zu ermöglichen, die aufgrund verschiedener ‚Messinstrumente‘, hier Bewertungsparameter, ermittelt wurden. Die Ergebnisse stellen somit keine absolute Vergleichbarkeit mit anderen Regionen her, da sie sich auf die Abweichungen vom lokalen, hier also Berliner, Mittelwert beziehen. Die Bewertung konzentrierte sich auf die für Wohnzwecke genutzten Baublöcke, für die Tagsituation wurden jedoch auch Blöcke mit größeren Arbeitsplatzanteilen (Gewerbe, Industrie, Gemeinbedarf, Verwaltung) sowie das öffentliche Straßenland einbezogen (sogenannte „Raumkulisse“). Grundlage zur Auswahl der Blöcke und Teilblöcke waren die Flächentypen des Umweltatlas ( Karte 06.08 „Stadtstrukturtypen, Flächentypen differenziert“ , SenStadtWohn 2021). Beide Bewertungszeitpunkte, Tag und Nacht, wurden mit ihren Raumkulissen in eine 4-stufige Ordinalskala mit den Klassen „sehr günstig“, „günstig“, „weniger günstig“ und „ungünstig“ überführt. Die Zusammenführung von Tag- und Nachtbewertung, noch auf der Ebene der differenzierten Baublöcke, wurde anhand einer logischen „wenn-dann“-Verknüpfung durchgeführt, um die vorkommenden Kombinationen in eine Gesamtbewertung zu überführen. Für die abschließende Aggregation auf die Planungsraumebene fand eine flächengemittelte Summation der betroffenen Blöcke und ihrer Kategorien statt, bevor diese mittels Intervallbildung in die drei Belastungsstufen des Umweltgerechtigkeitsansatzes überführt wurden. Abbildung 5 erläutert das Vorgehen schematisch. Grundlage zur Bewertung ist der aktuelle Stand der „Versorgungsanalyse Grün“, dargestellt und ausführlich erläutert in der Umweltatlaskarte 06.05 „Versorgung mit wohnungsnahen, öffentlichen Grünanlagen 2020“ . Die Ergebnisse der dortigen Bewertung konnten unmittelbar für die Einbindung in den Umweltgerechtigkeitsansatz genutzt werden. „Diese blockspezifischen Dringlichkeitsstufen wurden unter Berücksichtigung der jeweiligen Bevölkerungszahl auf die Planungsraume aggregiert. Im Ergebnis ergibt sich erneut eine Einordnung in drei Kategorien: von sehr gut / gut über mittel bis schlecht / sehr schlecht / nicht versorgt. Ausschlaggebend waren damit nur die verfügbaren Grünflachen und die Bevölkerungszahl; die Ausstattungsqualität der Grünflachen blieb unberücksichtigt“ (SenUMVK 2022). Grundlage zur Bewertung waren die Ergebnisse des stadtweiten Monitorings Soziale Stadtentwicklung (MSS), durch das seit 1998 im Rahmen eines kontinuierlichen, alle 2 Jahre fortgeschriebenen „Stadtbeobachtungssystems“ die soziale Lage der Bevölkerung auf der Ebene der Planungsräume ausgewertet und bereitgestellt wird. Aktuelle und frühere Ergebnisse des MSS stehen im Geoportal des Landes Berlin online zur Verfügung. Für den Umweltgerechtigkeitsansatz wurden die aktuellen Ergebnisse 2021 genutzt, die den Beobachtungszeitraum der Jahre 2019 und 2020 umfassen. Die Grundlage für die Darstellungen nach Status und Dynamik (Veränderung über zwei Jahre) sowie die Berechnung des Status- und Dynamik-Index bilden die folgenden drei Index-Indikatoren: Arbeitslosigkeit (nach SGB (Sozialgesetzbuch) II), Transferbezug der Nichtarbeitslosen (nach SGB II und XII) und Kinderarmut (Transferbezug SGB II der unter 15-Jährigen) (SenSBW 2022). „Für den Umweltgerechtigkeitsatlas wurde der Status-Index zugrunde gelegt: Je höher die Anteile von Arbeitslosigkeit, Empfang von Transferleistungen und Kinderarmut in den Planungsräumen, desto niedriger fallt deren Status-Index aus. Die Dynamik dieser Bereiche wird hierfür nicht betrachtet. Die Kategorien „niedrig“ und „sehr niedrig“ wurden zusammengefasst, um die Zahl der Ergebniskategorien wie bei den anderen Kernindikatoren von vier auf drei zu reduzieren. Planungsräume mit weniger als 300 Einwohner*innen werden von der Indexberechnung ausgeschlossen, um kleinräumige Verzerrungen zu vermeiden (im Monitoring Soziale Stadtentwicklung 2021 betraf dies fünf Planungsräume)“ (SenUMVK 2022, S. 10). Umweltgerechtigkeit kann nur als ein multidimensionales Thema betrachtet werden, es bedarf der integrierten Analyse und zusammenführenden Darstellung verschiedener Umweltbelastungen, aber auch von Umweltressourcen in ihrer sozialräumlichen Verteilung. Im Ergebnis des zweistufigen Umweltgerechtigkeitsmonitorings wurden folgende (integrierte) Mehrfachbelastungskarten erarbeitet (vgl. Abb. 2): „ Integrierte Mehrfachbelastungskarte Umwelt “, sie zeigt die vier umweltbezogenen Mehrfachbelastungen (Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung) „ Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “, sie erweitert die erste Karte um den 5. Kernindikator Soziale Problematik „ Berliner Umweltgerechtigkeitskarte 2021/2022 “, sie stellt neben den fünf Kernindikatoren noch die Betroffenheit (Anzahl der Einwohnerinnen und Einwohner in den Planungsräumen) sowie den Status der Wohnlage dar. Die „ Integrierte Mehrfachbelastungskarte Umwelt “ überlagert und summiert die vier umweltbezogenen Kernindikatoren pro Planungsraum. Die Kernindikatoren Luft-, Lärm- und thermische Belastung sowie Grünversorgung fließen als Einzelbelastung immer dann in die Bewertung ein, wenn sie im Hinblick auf die planungsraumbezogene Belastung nach der jeweiligen 3er-Klassifikation der schlechtesten Kategorie zugeordnet sind. Damit werden insbesondere diejenigen Planungsräume hervorgehoben, die multifaktoriell belastet sind, wobei sich mehrfache Umweltbelastungen ja nicht ausschießlich additiv, sondern auch kumulativ auswirken können. Um die räumliche Konzentration der Belastung durch Umweltfaktoren bei gleichzeitiger sozialer Beeinträchtigung zu visualisieren, wurde die Mehrfachbelastungskarte Umwelt um die Komponente der sozialen Benachteiligung („niedriger Statusindex“) erweitert („ Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “). Nicht berücksichtigt werden können mit dem bisherigen Ansatz die individuelle Exposition und Vulnerabilität des/der Einzelnen, also zum Beispiel physiologische Faktoren (etwa genetische Disposition, Stoffwechsel) sowie das individuelle Gesundheitsverhalten. Daher „kann eine Exposition trotz gleicher Intensität zu unterschiedlichen gesundheitlichen Wirkungen führen. Verantwortlich hierfür ist die individuelle Vulnerabilität, die den sogenannten Expositionseffekt modifizieren kann.“ ( BZgA online 2022 ). Die in der Methodik des Berliner Umweltgerechtigkeisansatzes abschließende Karte „ Berliner Umweltgerechtigkeitskarte 2021/2022 “ überlagert die Umwelt- und sozialen Belastungsfaktoren noch mit der Anzahl der Betroffenen (Gebiete mit mehr als 10.000 Einwohner*innen pro Quadratkilometer [km²]) und der Kennzeichnung von Planungsräumen mit überwiegend einfacher Wohnlage (mehr als 66% der betroffenen Adressen). Durch diese Kennzeichnungen kann auch innerhalb der stark belasteten Gebiete (mindestens 3fach) nochmals nach Handlungsdringlichkeiten priorisiert werden. Der Berliner Umweltgerechtigkeitsansatz konzentriert sich auf die Lebensbereiche und Wohnorte der Bewohnerinnen und Bewohner. Gebiete außerhalb der Siedlungsräume wie die Wälder, großen Park- und Freizeitanlagen sowie Flächen, die als Arbeitsstätten genutzt werden, besitzen im gesamtstädtischen Kontext ebenfalls wichtige Funktionen, werden aber in den Umweltgerechtigskarten ausgeblendet. Zu diesem Zweck überlagert die Kartenebene „weitgehend unbewohnte Flächen“ die Gesamtdarstellungen. Umweltdaten wie Daten allgemein haben in der Regel, zumal wenn sie aus verschiedenen thematischen Bereichen stammen, unterschiedliche Hintergründe, vor allem bezogen auf folgende Punkte: Art der Erfassung und Bewertung der Einzeldaten (messen, modellieren, abschätzen); gibt es vorgegebene bundes- / EU-weite Grenzwerte oder werden die Daten in Relation der Betrachtungsräume untereinander verglichen? räumliche Auflösung der Originaldaten und Raumbezug der Zielaussage; der zeitliche Abstand zwischen wiederkehrenden Aktualisierungen und methodische und andere fachliche Weiterentwicklungen im Laufe der Fortschreibungszyklen. Diese Rahmenbedingungen erschweren bereits den Vergleich unterschiedlicher Versionsstände innerhalb eines Themas, sie wirken sich naturgemäß noch weitreichender aus, wenn verschiedene Umwelt-, Gesundheits- und Sozialthemen in einem gemeinsamen Ansatz miteinander in Beziehung gesetzt werden. Auf der anderen Seite ist das große Potenzial zu würdigen, dass durch einen multifaktoriellen Vergleich im Hinblick auf Hinweise besteht, Ungleichheiten durch Umweltbelastungen und soziale Benachteiligung entgegenzuwirken. Das „Zielgebiet“ stellt das Land Berlin in seiner aktuellen „Umweltgerechtigkeits-Ausprägung“ dar, daher erscheint der Ansatz einer Kategorisierung auf der Basis eines relativen Vergleichs der Planungsräume von „gut bis schlecht“ untereinander als sinnvoller Weg, (räumliche) Prioritäten für Handlungstrategien in Berlin datenseitig zu unterstützen. Für die zukünftigen Fortschreibungen des Berliner Umweltgerechtigkeitsansatzes wird die „behutsame“ Weiterentwicklung in Methode und Vorgehen wahrscheinlich weiterhin notwendig sein, immer im Sinne einer transparenten Beschreibung des angewandten Verfahrens, um den Aspekt eines Monitoring und einer Evaluierung entlastender Maßnahmen zu unterstützen (siehe auch SenUMVK 2022, Kapitel „Umweltgerechtigkeit: Grenzen der Aussagekraft“, S. 11).

CTD data collected during the cruise MSM33 to the Black Sea in 2013

The Black Sea is the largest anoxic basin on earth and provides unique conditions for the study of key processes controlling the biology and biogeochemistry at pelagic redoxclines. By identifying microbiological/biogeochemical agents and assessing rates of the coupled element cycles of carbon, nitrogen, phosphorus, sulphur, manganese, and iron, the functional response of this specific environment to changes of external conditions will be visible. This entry summarizes the CTD and pump-CTD data collected during the MSM33 cruise to the Black Sea in 2013. The data set contains both the bottle files, documenting bottle ids and metadata, as well as the CTD profiles. The following parameters were measured: temperature, salinity, conductivity, turbidity, chlorophyll a, pH, redox potential, oxygen, sound.

Wie gut können Pinguine hören?

Weltpinguintag am 25. April – Neues Forschungsprojekt zum Hörvermögen von Pinguinen gestartet Das Leben der Pinguine ist zum Teil bereits gut belegt – zum Beispiel ihre Nahrungssuche oder Wanderbewegungen. Ob und wie gut Pinguine hören können, ist bisher allerdings erst in einer einzigen Studie untersucht worden. Dabei ist Lärm für die Tiere in den Meeren ähnlich problematisch wie Meeresmüll, aber bei weitem nicht so bekannt. Im Auftrag des Umweltbundesamts (UBA) ist nun am Deutschen Meeresmuseum Stralsund ein dreijähriges Forschungsprojekt zum Hörvermögen von Pinguinen und den Auswirkungen von Unterwasserlärm in der Antarktis gestartet. Pinguine sind Grenzgänger zwischen den Welten – sie leben sowohl im Meer als auch an Land. Einige Arten können bis zu 500 Meter tief tauchen und sind an das Leben unter Wasser perfekt angepasst, während andere Arten einen Großteil ihres Lebens an Land oder auf dem Eis verbringen. Während viele Lebensbereiche bereits wissenschaftlich belegt wurden, ist die Hörfähigkeit von Pinguinen bisher nur in einer einzigen Studie mit drei Pinguinen untersucht worden. Die Studie stammt aus dem Jahr 1969 und widmet sich dem Hörvermögen von Brillenpinguinen an Land, also an der Luft. Das nun gestartete Projekt soll deshalb die Frage beantworten, wie sensibel Pinguine auf natürliche und von Menschen verursachte Schallereignisse reagieren – sowohl an Land als auch unter Wasser. Hierfür werden im Odense Zoo (Dänemark), im Marine Science Center Rostock und im OZEANEUM Stralsund Pinguine trainiert. Wie bei einem Hörtest lernen die Tiere anzuzeigen, wann sie ein Tonsignal an Land gehört haben und werden dafür mit Futterfischen belohnt. Im Anschluss erledigen sie diese Aufgabe auch tauchend unter Wasser. Weiterer Projektpartner ist das Museum für Naturkunde in Berlin, das die Projektergebnisse mit Fokus auf die Auswirkungen des Unterwasserlärms in der Antarktis der Öffentlichkeit präsentieren wird. Die Studie „Hearing in Penguins“ wird vom Umweltbundesamt mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (⁠ BMU ⁠) gefördert. Im Südpolarmeer sind Pinguine, aber auch Wale und Robben durch den Antarktis-Vertrag vor Störungen durch Unterwasserschall und anderen menschgemachten Einflüssen zu schützen.

Verkehrsdaten Flensburg

Angaben zu u.a. Geschwindigkeit, Fahrzeugklassen oder Schall des Verkehrs in Flensburg.

Lärm im Meer – der unterschätzte Störfaktor

Airgunsignale stören Wale über weite Distanzen Airguns oder Luftpulser können noch in 2.000 Kilometer Entfernung Meeressäuger stören. Das zeigt eine neue Studie des Umweltbundesamtes. Der Störeffekt kann sowohl die Physis als auch die Psyche der Tiere verschlechtern. Maria Krautzberger, Präsidentin des UBA: „Der Lärm in den Meeren nimmt zu und wird voraussichtlich weiter zunehmen. Allein schon wegen der weiter anstehenden Rohstofferkundungen in den Weltmeeren. Airguns spielen dabei eine wichtige Rolle. Für Meeressäuger sind sie eine erhebliche Störung. Ihre Schallimpulse können die Verständigung von Blau- und Finnwalen extrem einschränken. Im schlimmsten Fall sogar über ein gesamtes Ozeanbecken hinweg.“ Dieser Effekt träte auch dann ein, wenn Airguns nur zu wissenschaftlichen Zwecken eingesetzt werden. Airguns oder Luftpulser wurden entwickelt, um den Meeresboden nach Öl- und Gaslagerstätten zu untersuchen. Für Wale ist die Fähigkeit ihre Umgebung akustisch wahrzunehmen lebenswichtig – sie „sehen“ mit den Ohren. Werden diese Signale überdeckt, also das „Sehfeld“ verkleinert, kann dies die biologische Fitness – den physischen und psychischen Zustand – von marinen Säugetieren wie Blau- oder Finnwal verschlechtern. Menschgemachter Unterwasserlärm ist heute in allen Ozeanen fast ständig präsent. Der Schiffsverkehr ist eine Quelle chronischen Lärms, der ein hohes, sogenanntes „Maskierungspotential“ hat. Maskierung bedeutet, dass Schallsignale sich akustisch gegenseitig verdecken. Ein gewolltes Signal zur Verständigung zwischen den Meeressäugern wird dabei durch ein Störsignal verdeckt, also akustisch maskiert. Airguns für die Erkundung des Meeresbodens senden solche Störsignale aus. Sie sind viel lauter, aber auch viel kürzer als typischer Schiffslärm. Für diese lauten Schallimpulse wird schon länger befürchtet, dass sie das Gehör von marinen Säugetieren schädigen können. Solche impulshaften Schallwellen können dabei 1.000-mal lauter sein als ein Schiff. Unterwasserlärm kann aber auch die Kommunikation zwischen Meeressäugern und ihre Wahrnehmung anderer Umgebungsgeräusche stören. Die Wale brauchen diese Signale beispielsweise, um Nahrung oder Paarungspartner zu finden. Die neue ⁠ UBA ⁠-Studie demonstriert nun: Airgunsignale können über eine Entfernung von bis mindestens 2.000 Kilometern (km) wirken. Das kann Tiere innerhalb des besonders geschützten Bereiches der Antarktis südlich von 60° betreffen. Selbst dann, wenn die Schiffe nördlich des 60°-Breitengrades mit Airguns bzw. Luftpulsern arbeiten. Schon in mittleren Entfernungen (500-1.000 km) kann das Airgunsignal zu einem intervallartigen Geräusch gedehnt werden, das bereits ein hohes Maskierungspotenzial hat. In Entfernungen ab 1.000 km können sich Airgunimpulse zu einem kontinuierlichen Geräusch ausdehnen. Das schränkt die Verständigung von Blau- und Finnwalen in der Antarktis extrem ein; auf nur noch etwa ein Prozent des natürlichen Verständigungsraumes. Die Ergebnisse der UBA-Studie zeigen, dass Maskierungseffekte und signifikante Auswirkungen auf das Vokalisationsverhalten von Tieren über große Distanzen möglich sind und bei der Bewertung von Umweltwirkungen impulshafter Schallquellen wie Airguns beachtet werden sollten. Das Modell soll in einem Folgeprojekt weiterentwickelt werden, so dass auch eine Übertragung auf andere Lebensräume möglich ist. Hierzu gehört zum Beispiel die Arktis, in der in den nächsten Jahren mit einer Vielzahl von ⁠ Airgun ⁠-Einsätzen zur Erkundung des Meeresbodens auf Bodenschätze und zur Forschung zu rechnen ist. UBA-Präsidentin Maria Krautzberger: „Wir müssen die Wirkung von Schallimpulsen aus Airguns auf die Meeressäuger genau kennen und diese in die Umweltbewertung der Meeresforschung einbeziehen. Wir brauchen deshalb auch ein internationales Lärmschutzkonzept, zum Beispiel im Rahmen des Antarktis-Vertragsstaaten-Systems.“ In Deutschland hat das Bundesumweltministerium zum 1. Dezember 2013 ein Schallschutzkonzept für die Nordsee in Kraft gesetzt, das einen naturverträglichen Ausbau der Offshore-Windkraft ermöglicht. Es soll die hier lebendenden Schweinswale besonders in der Zeit der Aufzucht ihres Nachwuchses vor Lärm schützen, der beim Rammen der Fundamente für die Windkraftanlagen entsteht. Vollständiger Abschlussbericht zu der UBA-Studie „ Entwicklung eines Modells zur Abschätzung des Störungspotentials durch Maskierung beim Einsatz von Luftpulsern (Airguns) in der Antarktis “. Bei den zur Erkundung des Untergrundes eingesetzten Airguns (oder Luftpulser) handelt es sich prinzipiell um Metallzylinder, in denen Luft mit hohem Druck komprimiert wird und dann explosionsartig austritt. Hierbei entsteht eine Gasblase, die beim Kollabieren ein sehr kurzes, aber sehr lautes Schallsignal erzeugt. Der größte Teil der von Airguns erzeugten Schallwellen stammt aus dem tiefen Frequenzbereich bis 300 Hertz, so dass eine Überschneidung mit Lauten und Gesängen von Walen und Robben wahrscheinlich ist. Vor allem die im Südlichen Polarmeer häufigen Bartenwale, wie Blauwal oder Finnwal, kommunizieren überwiegend in diesem Frequenzbereich. Die UBA-Studie modellierte die Schallausbreitung von Airgun-Signalen für Entfernungen in 100, 500, 1.000 und 2.000 km. Kurze, tieffrequente Schallsignale können sich über große Entfernungen zu einem akustischen Dauersignal verlängern, das ein hohes Störpotenzial hat. Die modellierten Störsignale wurden mit Rufen und Gesängen von Finnwal, Blauwal und Weddellrobbe überlagert, um die Distanzen zu ermitteln, in denen Kommunikationssignale potenziell maskiert (= verdeckt) und dadurch Kommunikationsreichweiten verringert werden können. Die Störsignale wurden mit einem mathematischen Hörmodell  im Frequenzbereich der ausgewählten Vokalisationssignale von Weddellrobbe, Blauwal und Finnwal analysiert. Diese UBA-Studie zeigt, dass auch die Fernwirkung von Unterwasserlärm nicht unterschätzt werden sollte: Obwohl eine Reihe von Fragen noch unbeantwortet sind, zeigen die Ergebnisse der Studie, dass Maskierung durch Airgun-Signale sehr wahrscheinlich ist und ein Populationseffekt bei dem modellierten Maß der Auswirkung nicht ausgeschlossen werden kann. Dies sollte Eingang in die Betrachtung möglicher Umweltwirkungen impulshafter Schallquellen wie Airguns finden.

Kinder-Umwelt-Survey 2003/06 - Lärm

Schall durchdringt unser Leben allerorts. Er ist ein essentieller Bestandteil unseres sozialen Lebens und gleichzeitig unerwünschter Abfall. Unser Körper ist biologisch dazu vorbereitet Schall zu erzeugen und zu verarbeiten. Hierin besteht ist ein großer Unterschied zu anderen Schadstoffen, denen wir im Alltag ausgesetzt sind. Wir benötigen Schall zur Kommunikation, Orientierung und als Warnsignal. Entsprechend sind wir mit einem feinen Sensor ausgestattet, der Schall innerhalb eines großen Intensitätsspektrums wahrnehmen verarbeiten kann. Dieser Sensor - das Ohr mit seinen nachgeschalteten Verarbeitungsebenen - ist immer aktiv, auch im Schlaf. Schall wird zu Lärm, wenn er Störungen, Belästigungen, Beeinträchtigungen oder Schäden hervorruft. Ein Übermaß an Schall, in Stärke und Dauer, beeinträchtigt nicht nur das subjektive Wohlempfinden, sondern kann zu nachhaltigen gesundheitlichen Beeinträchtigungen  und Schäden führen. Umweltlärm wird als der Umweltfaktor angesehen, der wahrscheinlich die meisten Europäer nachteilig beeinflusst. Veröffentlicht in Umwelt & Gesundheit | 01/2009.

Kinder-Umwelt-Survey (KUS) 2003/06

Schall durchdringt unser Leben allerorts. Er ist ein essentieller Bestandteil unseres sozialen Lebens und gleichzeitig unerwünschter Abfall. Unser Körper ist biologisch dazu vorbereitet Schall zu erzeugen und zu verarbeiten. Hierin besteht ist ein großer Unterschied zu anderen Schadstoffen, denen wir im Alltag ausgesetzt sind. Wir benötigen Schall zur Kommunikation, Orientierung und als Warnsignal. Entsprechend sind wir mit einem feinen Sensor ausgestattet, der Schall innerhalb eines großen Intensitätsspektrums wahrnehmen verarbeiten kann. Dieser Sensor - das Ohr mit seinen nachgeschalteten Verarbeitungsebenen - ist immer aktiv, auch im Schlaf. Schall wird zu Lärm, wenn er Störungen, Belästigungen, Beeinträchtigungen oder Schäden hervorruft. Ein Übermaß an Schall, in Stärke und Dauer, beeinträchtigt nicht nur das subjektive Wohlempfinden, sondern kann zu nachhaltigen gesundheitlichen Beeinträchtigungen  und Schäden führen. Umweltlärm wird als der Umweltfaktor angesehen, der wahrscheinlich die meisten Europäer nachteilig beeinflusst. Veröffentlicht in Umwelt & Gesundheit | 01/2009.

1 2 3 4 547 48 49