Eine bisher ungenutzte Quelle für erneuerbare Treibstoffe ist Schwarzlauge aus dem Kraft-Zellstoffprozess, bei dem weltweit jährlich etwa 70 Mio t Lignin in Lösung gebracht und verbrannt werden. Das Gesamtziel des Vorhaben ist darauf ausgerichtet, 'Kraftlignin' in einem mehrstufigen Ansatz derart aufzubereiten und umzuwandeln, dass es als flüssiger Energieträger zum Einsatz kommen kann. In der ersten Stufe wird die Ablauge hydrothermal behandelt, um die Oligomeren anzureichern, die dann in einer zweiten Stufe durch Hydrocracking oder alternativ durch CLC deoxygeniert werden sollen. Danach folgt ein Coprocessing des hydrierten Bioöls mit petrostämmigen Fraktionen zur Synthese Infrastruktur-kompatibler Treibstoffe. Ein besonders innovativer Ansatz des Vorhabens besteht darin, Schwarzlauge als Lösemittel für ligninreiche Rückstände aus Bioraffinerieprozessen zu nutzen, z.B. aus sauren oder hydrothermal arbeitenden Bioethanolprozessen, aus Organosolv-Verfahren (CBP Leuna) und Soda- Verfahren, Bioöle aus Pyrolyseverfahren. Die zusätzliche Einbringung ligninhaltiger Rohstoffe erhöht nicht nur die Ausgangskonzentration und Ausbeute im LIGNOHTL Prozess, sondern führt auch zu synergistischen Effekten auf andere Bioraffinerieverfahren, da die erhöhte Wertschöpfung des Lignins einen wichtigen Beitrag zur Wirtschaftlichkeit leisten muss, wie es von zahlreichen Studien belegt wird. Die TI-Aufgabe liegt insbesondere in der Parameteroptimierung für die HDO und CLC Stufen sowie in der Analytik aller Edukte und Produkte. Die Arbeit ist in 6 Pakete aufgeteilt: 1. Literaturrecherche, Parameteroptimierung mittels HDO im Kleinautoklav, 3. Parameteroptimierung und Herstellung größerer Mengen in einem kontinuierlichen Testreaktor mit Robinson-Mahoney Design, 4. Konversionstests von HTL-Bio-Öl in einer existierenden CLC-Anlage, 5. Weiterentwicklung von Analysenmethoden, 6. Berichtswesen.
Das Projekt widmet sich der Untersuchung von Entfärbungsmethoden für Lignin, um die Anwendungsmöglichkeiten dieses Nebenerzeugnis der Zellstoff- und Papierindustrie zu erweitern. Lignin im Holz ist zwar nicht dunkel gefärbt, in der Industrie fällt es jedoch als dunkelbraune, fast schwarze Substanz ('Schwarzlauge') an. Die dunkle Farbe ist kein Problem bei niedrigpreisigen Anwendungen (Energiegewinnung, Dispersionsmittel für die Ölförderung, etc), sie stellt jedoch ein Hindernis bei höherwertigen Anwendunge dar. Besonders für Anwendungen, bei denen Lignin farblose Produkte ersetzen soll (Bindemittel in der Papierherstellung, Klebstoffe, etc), werden effiziente Methoden zur Entfärbung benötigt. Das Projekt hat einen großen Anteil an Grundlagenforschung, da die bekannten Techniken zur Zellstoffbleiche nicht auf technisch gewonnenes Lignin angewandt werden können. Die verschiedenen Varianten an Lignin (Kraft, Lignosulfonat, Holzschliff) verlangen außerdem nach jeweils anderen methodischen Zugängen. Drei unterschiedliche Reaktionklassen zur Bleiche werden in diesem Projekt untersucht: Oxidation, Reduktion, Hydrierung und ihre Kombinationen.
Mit hydrophob modifizierten Silikatpartikeln konnten wasserabperlende Melaminharzschäume entwickelt werden, die sich besonders für Dämmstoffe eignen. Die Silikatpartikel haben hierbei sowohl zu hydrophoben Zentren als auch zu einer Stabilisierung der Mikrobläschen geführt. Erste Vorversuche zeigten, dass auch modifizierte Lignine im Rahmen solcher Entwicklungsprozesse eingesetzt werden können. Dadurch wäre eine Substitution der hochpreisigen Silikatpartikel vorstellbar. Ligninmodifizierung fokussiert in erster Linie auf chemische Reaktionen, die effizient zur Hydrophobierung genutzt werden können. Neben der Struktur der Substituenten ist der Substitutionsgrad als wesentlicher Parameter für diese Stufe der Materialentwicklung zu nutzen. Ein weiteres Aufgabenfeld wird durch die Sprödigkeit der reinen Schaumstoffe abgesteckt. Es finden Holzfasern Anwendung, welche den Dämmstoffen applikationsgerechte, mechanische Eigenschaftsprofile verleihen sollen. Ein wesentlicher Vorteil dieser Dämmstoffe wird neben der thermischen Isolierung insbesondere auch im Brandschutz gesehen, wobei die Melaminharzmatrix diesbezüglich als aktive Komponente agiert. Die einzelnen Aufgaben zusammengefasst: Bereitstellung von Schwarzlauge, Gewinnung von Rohlignin, Chemische Modifizierung von Lignin, Entwicklung von Harzrezepturen, Schaumherstellung, Herstellung holzfaserbasierter Dämmmaterialien, Industriezusammenarbeit zur Fertigung von Holzkompositen und Analytik aller Entwicklungsstufen.
Das Gesamtziel des Vorhabens ist eine stoffliche Verwendung des in Schwarzlauge enthaltenen Lignins von Sulfatzellstoffwerken. Das Projekt zielt eine oxidative Deploymerisation des Kraft-Lignins an, um die entstehenden oligomeren Produkte nach chemischer Modifikation in zwei ausgewählten Anwendungsfeldern (PU-Systeme & Compoundierung) zu testen. Vorteile sind die sukzessive Verringerung des Schwefelgehalts im Lignin, das Darstellen zweier stofflicher Verwertungswege von der Schwarzlauge bis zum Produkt und die nahe Zusammenarbeit mit der beteiligten Industrie sowie die frühe Einbindung weiterer Industriepartner für ein geplantes Folgeprojekt. Zur Aufbereitung der Schwarzlauge für folgende Oxidationsschritte stehen die saure Fällung des Lignins und Membranfiltration im Vordergrund. Mit dem von Störstoffen befreiten Kraft-Lignin werden anschließend Umsetzungen mit den Oxidationsmitteln Sauerstoff, Ozon und Wasserstoffperoxid durchgeführt, um das Lignin oxidativ zu depolymerisieren. So gewonnenes oligomeres Lignin wird über zwei Routen funktionalisiert (Aminierung & Umsetzung zu Polyisocyanaten; Umsetzung zu unpolaren Estern) und in Anwendungsbeispielen getestet (PU-Systeme, Compound-Füllstoff). Mit einer begleitenden technoökonomischen Betrachtung evaluieren die Industriepartner im Projektverlauf das Anwendungspotential der oxidativen Umsetzung.
'- To study the process integration of the Black Liquor Gasification with Motor Fuels production (BLGMF) system with an existing, and a future modern ecocyclic, pulp mill for the production of renewable energy sources in the form of CO2 neutral fuels for automotive uses. The emphasis of the study will be to use existing conditions for creating added value for the pulp mill industry - To study the technical and economical feasibility of black liquor gasification integrated with methanol/DME production as motor fuels for automotive uses. A preliminary engineering study will be made for the plant with a +/- 30 percent cost estimate - To investigate a group of stakeholders willing to support preparations for investments for de-veloping resources, for plant construction and for marketing of renewable energy product - To define the economic framework conditions and identify barriers of various kinds and market obstacles to implementation of said project under conditions for private enterprises. Description of project work: The proposed object will combine a) Finding new efficient use of the energy in black liquor from pulp mills by high pressure, oxygen blown black liquor gasification and methanol/dimethyl-ether (DME) synthesis production as renewable CO2 neutral fuels for automotive uses, and b) Identifying and clearing of market hinders (e.g. technical, environmental, legal and economical) for a successful market introduction of methanol/DME as renewable transport fuels. The project comprises six main phases: Phase 1. Project definition for technology selection (gas cleaning and methanol/DME synthesis) and engineering design information. Process plant units will be specified and battery limits be identified. The acquired engineering design information will form the basis for phase 3 of engineering and cost estimation. Phase 2. Overview of product market situation, competitive economic strategy to implementation. Market is analysed and hinders identified for a market introduction of renewable transport fuels. Phase 3. Engineering design work on process units with conceptual and basic plant design establishing battery limit specifications and cost data. The engineering design information from phase 1 will be basis for preliminary engineering of the process plant with attention to process integration and mill interface. Phase 4. Necessary conditions for implementation of a system using motor alcohols/ethers are identified. Potential stakeholder group is formed. Strategic economic solutions will be sought to the technical, environmental, organisational, legal and economical barriers. Phase 5. Investment estimation with capital investment cost and operating costs for the plant financial modelling. Economic modelling will be made with a sensitivity analysis. Phase 6. Dissemination of project results, with reporting and attending conferences and evaluation discussions on further continuation. Result: Description of project expected results: usw.
Im Mittelpunkt dieses Projektes stand die komplette Prozesskette ausgehend von der Ligninisolierung aus einheimischer Schwarzlauge (Kraft-Prozess) bis hin zur Herstellung und Charakterisierung bio-basierter Komposite. Für die Isolierung des Lignins war die säureinduzierte Fällung vorgesehen, wobei durch nachgelagerte Reinigungsoperationen eine ausreichende Qualität des Lignins sichergestellt werden musste. Um die Eigenschaften des Rohlignins für die Herstellung von Epoxidharzen zu verbessern, ist die Modifizierung bzw. Derivatisierung von Lignin möglich. Dabei wird zwischen chemischer und physikalischer Modifizierung unterschieden, wobei die Extraktion als physikalische Methode zur Gewinnung niedermolekularer Ligninfraktionen eingesetzt wurde. Mit ausgewählten Ligninfraktionen galt es dann, geeignete Harzrezepturen zu entwickeln. Dabei wurde ein möglichst hoher Ligningehalt aber auch ein hoher Anteil an bio-basierten Harzkomponenten angestrebt. Aufgrund der favorisierten Komposite lag der Schwerpunkt bei diesen Harztypen auf der Entwicklung warmhärtender Harze. Die Herstellung reiner Duromere diente dazu, neben den Materialeigenschaften auch die Eigenschaften der Harze weiter optimieren zu können. Als der wesentliche Parameter für diesen Entwicklungsschritt fungierte die Harzzusammensetzung. Für ausgewählte bio-basierte Epoxidharze bestand die Aufgabe darin, neben der Herstellung unidirektional verstärkter Komposite, auch Anwendungen im Bereich Prepregs sowie härtbare Formmassen aufzuzeigen.
Hauptziel des geplanten Forschungsvorhabens war die Gewinnung einheimischen Lignins aus Schwarzlauge sowie deren Verwendung für die Herstellung faserverstärkter Duromer-Composite. In der ersten Projektphase wurden dazu einkomponentige Harz hergestellt und deren Verarbeitungsparameter erörtert, die im Handlaminieren oder bei der Harzinjektion Anwendung finden. In der 2. Projektphase wurde dann angestrebt die Materialien so zu modifizieren, dass sie auch als lagerfähige Formmasse im Spritzguss verwendet werden können. Lignin fällt in Form von Schwarzlauge in der Zellstoffindustrie hochtonnagig an. Als Nebenprodukt bei der Cellulosegewinnung steht bisher überwiegend die energetische Verwertung bei den Celluloseherstellern im Vordergrund. Das Lignin kann nach Isolierung, Reinigung und Fraktionierung epoxidiert werden und ist somit für die Verwendung in Epoxidharzsystemen geeignet. Es sollte eine Entwicklung von Epoxidharz-Rezepturen erfolgen bei denen ein möglichst großer Anteil durch Lignin-basierte Polymere ersetzt werden kann. Die Ligninharze wurden während der vollen Projektlaufzeit immer weiterentwickelt, diverse Epoxidharzrezepturen wurden am Fraunhofer IAP hergestellt und anschließend am IfW weiter verarbeitet. Ziel war es, am IfW aus den Ligninderivaten neue Biocomposite in Kombination mit Verstärkungsfasern zu entwickeln, und somit neue werkstoffliche Anwendungsmöglichkeiten für die Schwarzlauge zu erschließen
Thema: Das Ziel des Vorhabens besteht darin, ein Verfahren zu entwickeln und in einer Demonstrationsanlage umzusetzen, durch welches das in der Papier- und Zellstoffindustrie anfallende Lignin derart strukturiert und agglomeriert wird, dass ein problemlos handhabbares Handelsgut entsteht, welches für die stoffliche Verwertung und als marktfähiger neuer Biomassefestbrennstoff zur thermischen Anwendung geeignet ist. Durch die im Projekt zu entwickelnde Vorbehandlungs- und Agglomerationstechnologie wird das Lignin in eine optimale und vielseitig nutzbare Form überführt, die ein deutlich besseres Verbrennungsverhalten ermöglicht sowie einen geringeren apparatetechnischen Aufwand in der Verbrennungseinheit ermöglicht. Für die Nutzung des Lignins ergeben sich als definiertes Produkt weitgehende Perspektiven bei der Vermeidung der Nachteile der bislang gehandelten Staubform. Ziele: Durch die geplante Entwicklung einer völlig neuen Aufbereitungs- und Agglomerationstechnologie für Lignin, ausgehend von seiner Anfallsform (Schwarzlauge) und die damit im Zusammenhang stehende Herstellung eines vielseitig anwendbaren Produktes, soll eine neue Methode zur effizienten Erschließung und Nutzung dieses biogenen Reststoffes für eine breite Anwendung vorbereitet werden. Ein weiteres Potenzial der zu entwickelnden Technologie besteht in der energetischen Nutzbarmachung von biogenen Roh- und Reststoffen, die bislang durch unvorteilhaftes Handling nicht oder nur bedingt einer energetischen Nutzung zugeführt werden konnten. Durch im Rahmen des Projektes vorgesehene Zumischung spezieller Zumischstoffe in das zukünftige Produkt kann eine wesentliche Verringerung der Emissionen im Verbrennungsprozess sowie eine von vornherein vielseitigere Eignung der Bioagglomerate realisiert werden. Über das eigentliche Produkt hinaus ergeben sich so vielseitige Synergien und breite Anwendungsmöglichkeiten. Maßnahmen: - Brennstofftechnische Analyse der Ligninpellets hinsichtlich emissionsrelevanter Komponenten. Ableitung eines Anforderungsprofils für den Einsatz von Lignin als Brennstoff (Abmessungen, Festigkeiten, Zusammensetzung) - Durchführung von Verbrennungsversuchen zur Beurteilung des Verbrennungsverhaltens und Messung der gasförmigen und partikulären Emissionen. - Beurteilung des Einsatzes von Additiven zur Beeinflussung/Optimierung des Verbrennungsverhaltens. - Einordnung der Ligninpellets in einen genehmigungsrechtlichen Kontext. Schwerpunkte: - Erzeugung von Bioagglomeraten basierend auf Lignin unter Einsatz von ligninhaltigen Ablaugen der Papier- und Zellstoffindustrie, Entwicklung eines industriell umsetzbaren Verfahrens der Bioagglomeratherstellung, - Einstellung festgelegter Eigenschaften der Bioagglomerate in Abhängigkeit der Einsatz- und Nutzungsvarianten, Entwicklung einer Demonstrationsanlage mit dem Ziel der industriellen Umsetzung, - Untersuchungen zur thermischen Verwertbarkeit (Abbrand- und Emissionsverhalten).
Thema: Das Ziel des Vorhabens besteht darin, ein Verfahren zu entwickeln und in einer Demonstrationsanlage umzusetzen, durch welches das in der Papier- und Zellstoffindustrie anfallende Lignin derart strukturiert und agglomeriert wird, dass ein problemlos handhabbares Handelsgut entsteht, welches für die stoffliche Verwertung und als marktfähiger neuer Biomassefestbrennstoff zur thermischen Anwendung geeignet ist. Durch die im Projekt zu entwickelnde Vorbehandlungs- und Agglomerationstechnologie wird das Lignin in eine optimale und vielseitig nutzbare Form überführt, die ein deutlich besseres Verbrennungsverhalten ermöglicht sowie einen geringeren apparatetechnischen Aufwand in der Verbrennungseinheit ermöglicht. Für die Nutzung des Lignins ergeben sich als definiertes Produkt weitgehende Perspektiven bei der Vermeidung der Nachteile der bislang gehandelten Staubform. Ziele: Durch die geplante Entwicklung einer völlig neuen Aufbereitungs- und Agglomerationstechnologie für Lignin, ausgehend von seiner Anfallsform (Schwarzlauge) und die damit im Zusammenhang stehende Herstellung eines vielseitig anwendbaren Produktes, soll eine neue Methode zur effizienten Erschließung und Nutzung dieses biogenen Reststoffes für eine breite Anwendung vorbereitet werden. Ein weiteres Potenzial der zu entwickelnden Technologie besteht in der energetischen Nutzbarmachung von biogenen Roh- und Reststoffen, die bislang durch unvorteilhaftes Handling nicht oder nur bedingt einer energetischen Nutzung zugeführt werden konnten. Durch im Rahmen des Projektes vorgesehene Zumischung spezieller Zumischstoffe in das zukünftige Produkt kann eine wesentliche Verringerung der Emissionen im Verbrennungsprozess sowie eine von vornherein vielseitigere Eignung der Bioagglomerate realisiert werden. Über das eigentliche Produkt hinaus ergeben sich so vielseitige Synergien und breite Anwendungsmöglichkeiten. Maßnahmen: - Erarbeitung eines verfahrenstechnischen Konzeptes zur Aufbereitung des Lignins und zur Herstellung leicht handhabbarer und vielseitig anwendbarer Agglomerate, - Untersuchungen zum Agglomerationsverhalten in Abhängigkeit vom Aufschlussgrad, Korngröße, Kornverteilung und Wassergehalt - Auswahl geeigneter Agglomerationshilfsmittel zur Erzielung festgelegter Eigenschaften sowie von Zuschlagstoffen zur Verbesserung des Abbrand- und Emissionsverhaltens der Agglomerate - Sicherheitstechnische Untersuchungen - Vorschlag zur Erarbeitung von Qualitätsstandards für Ligninagglomerate. Schwerpunkte: - Erzeugung von Bioagglomeraten basierend auf Lignin unter Einsatz von ligninhaltigen Ablaugen der Papier- und Zellstoffindustrie, Entwicklung eines industriell umsetzbaren Verfahrens der Bioagglomeratherstellung, - Einstellung festgelegter Eigenschaften der Bioagglomerate in Abhängigkeit der Einsatz- und Nutzungsvarianten, Entwicklung einer Demonstrationsanlage mit dem Ziel der industriellen Umsetzung, - Untersuchungen zur thermischen Verwertbarkeit (Abbrand- und Emissionsverhalten).
Origin | Count |
---|---|
Bund | 18 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Förderprogramm | 14 |
Text | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 14 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 6 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 2 |
Keine | 6 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 13 |
Lebewesen & Lebensräume | 14 |
Luft | 7 |
Mensch & Umwelt | 18 |
Wasser | 7 |
Weitere | 16 |