API src

Found 382 results.

Related terms

Phosphor Speziation in Mineral Staub und Marineaerosol Partikeln

Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Untersuchung der Schlüsselmechanismen der Aerosolnukleation in der tropischen Troposphäre über dem Indopazifik im Rahmen der HALO-Mission CAFE-Pacific

Im Rahmen des Projekts soll die Neubildung von Aerosolpartikeln in der tropischen oberen Troposphäre über dem Indopazifik untersucht werden. Die chemischen Substanzen, die für die Aerosolnukleation und das Wachstum von Partikeln in der tropischen oberen Troposphäre verantwortlich sind, konnten bisher nicht identifiziert werden. Ein zentrales Ziel der Mission CAFE-Pacific mit dem Forschungsflugzeug HALO wird es sein, die Nukleationsprozesse in der oberen Troposphäre zu untersuchen und insbesondere die für die Nukleation verantwortlichen Substanzen erstmals zu identifizieren und zu quantifizieren. Mit Hilfe des in diesem Projekt eingesetzten Chemischen Ionisations-Massenspektrometers können schwerflüchtige Substanzen wie Schwefelsäure, Methansulfonsäure und hochoxidierte organische Verbindungen gemessen werden. Es werden die photochemischen Oxidationsprozesse, die im Ausfluss von hochreichender Konvektion ablaufen, untersucht, beispielsweise die Umwandlung von Dimethylsulfit zu Schwefeldioxid, Schwefelsäure und Methansulfonsäure. Die Aufklärung der Oxidations- und Nukleationsprozesse ermöglicht es, die Rolle der Aerosolnukleation in der tropischen oberen Troposphäre als zentrale Quellregion sowohl für die Entstehung von Wolkenkondensationskernen in den Tropen als auch für die Entstehung der stratosphärischen Aerosolschicht zu beurteilen.

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Chemiewerk Bad Köstritz GmbH Bundesland: Thüringen Laufzeit: seit 2019 Status: Laufend

Separation und Ansäuerung nach Fällung von Flüssigmist aus Rinderställen

Ausgehend von den Erkenntnissen des SAFT-Projektes, welches durch die Ansäuerung von Flüssigmist mit Schwefelsäure die Ammoniak- und Methanemissionen deutlich mindert, wird ein Verfahren entwickelt, das auch für die Rinderhaltung geeignet ist. Das Verfahren soll dahingehend optimiert werden, dass der Säureverbrauch deutlich gesenkt wird, was die Kosten- und Ressourceneffizienz erhöht. Durch Einsatz von Calcium-Additiven wird der Carbonatpuffer, der für den Großteil des Säurebedarfs während der Ansäuerung verantwortlich ist, vorab eliminiert und ausgefällt. Eine Separierung des Flüssigmistes in eine flüssige und eine feste Phase reduziert den Säurebedarf zusätzlich und führt zu einer Nährstoffentfrachtung der flüssigen Phase. Unter diesen Umständen wird nach Alternativen zur Schwefelsäure gesucht. Dadurch wird das Verfahren auch im ökologischen Landbau einsetzbar, die Gefahr einer Schwefelüberdüngung nach der Flüssigmistausbringung entfällt, das Problem der Betonkorrosion in Flüssigmistkanälen und Lagerbehältern wird minimiert und die Methangasausbeute beim Einsatz des Flüssigmistes in Biogasanlagen erhöht. In Laborversuchen wird zunächst der Einsatz von Ca-Additiven und der Separation des Flüssigmistes zur Ausfällung des Carbonatpuffers untersucht. Schließlich wird an dem so vorbereiteten Flüssigmist der Säurebedarf bestimmt und der Einsatz von Alternativen zur Schwefelsäure untersucht. An dem so angesäuerten Flüssigmist wird das Biogasbildungspotential bestimmt. Die bereits etablierte Ansäuerungstechnik wird um ein Modul der Carbonatfällung und eine Separationseinheit erweitert. Die Anlage erhält für den praktischen Einsatz eine neu zu entwickelnde volumetrische Carbonatgehaltsbestimmung. Diese soll die anfällige und wartungsintensive pH-Wert-Messung mittels pH-Sonden ersetzen. Am Ende erfolgt eine ökonomische Bewertung der Ansäuerungstechnik unter Berücksichtigung der Methan- und Ammoniakemissionsminderung, des Biogaspotentials und einer Düngebilanzierung.

Separation und Ansäuerung nach Fällung von Flüssigmist aus Rinderställen, Teilprojekt A

Ausgehend von den Erkenntnissen des SAFT-Projektes, welches durch die Ansäuerung von Flüssigmist mit Schwefelsäure die Ammoniak- und Methanemissionen deutlich mindert, wird ein Verfahren entwickelt, das auch für die Rinderhaltung geeignet ist. Das Verfahren soll dahingehend optimiert werden, dass der Säureverbrauch deutlich gesenkt wird, was die Kosten- und Ressourceneffizienz erhöht. Durch Einsatz von Calcium-Additiven wird der Carbonatpuffer, der für den Großteil des Säurebedarfs während der Ansäuerung verantwortlich ist, vorab eliminiert und ausgefällt. Eine Separierung des Flüssigmistes in eine flüssige und eine feste Phase reduziert den Säurebedarf zusätzlich und führt zu einer Nährstoffentfrachtung der flüssigen Phase. Unter diesen Umständen wird nach Alternativen zur Schwefelsäure gesucht. Dadurch wird das Verfahren auch im ökologischen Landbau einsetzbar, die Gefahr einer Schwefelüberdüngung nach der Flüssigmistausbringung entfällt, das Problem der Betonkorrosion in Flüssigmistkanälen und Lagerbehältern wird minimiert und die Methangasausbeute beim Einsatz des Flüssigmistes in Biogasanlagen erhöht. In Laborversuchen wird zunächst der Einsatz von Ca-Additiven und der Separation des Flüssigmistes zur Ausfällung des Carbonatpuffers untersucht. Schließlich wird an dem so vorbereiteten Flüssigmist der Säurebedarf bestimmt und der Einsatz von Alternativen zur Schwefelsäure untersucht. An dem so angesäuerten Flüssigmist wird das Biogasbildungspotential bestimmt. Die bereits etablierte Ansäuerungstechnik wird um ein Modul der Carbonatfällung und eine Separationseinheit erweitert. Die Anlage erhält für den praktischen Einsatz eine neu zu entwickelnde volumetrische Carbonatgehaltsbestimmung. Diese soll die anfällige und wartungsintensive pH-Wert-Messung mittels pH-Sonden ersetzen. Am Ende erfolgt eine ökonomische Bewertung der Ansäuerungstechnik unter Berücksichtigung der Methan- und Ammoniakemissionsminderung, des Biogaspotentials und einer Düngebilanzierung.

Separation und Ansäuerung nach Fällung von Flüssigmist aus Rinderställen, Teilprojekt C

Ausgehend von den Erkenntnissen des SAFT-Projektes, welches durch die Ansäuerung von Flüssigmist mit Schwefelsäure die Ammoniak- und Methanemissionen deutlich mindert, wird ein Verfahren entwickelt, das auch für die Rinderhaltung geeignet ist. Das Verfahren soll dahingehend optimiert werden, dass der Säureverbrauch deutlich gesenkt wird, was die Kosten- und Ressourceneffizienz erhöht. Durch Einsatz von Calcium-Additiven wird der Carbonatpuffer, der für den Großteil des Säurebedarfs während der Ansäuerung verantwortlich ist, vorab eliminiert und ausgefällt. Eine Separierung des Flüssigmistes in eine flüssige und eine feste Phase reduziert den Säurebedarf zusätzlich und führt zu einer Nährstoffentfrachtung der flüssigen Phase. Unter diesen Umständen wird nach Alternativen zur Schwefelsäure gesucht. Dadurch wird das Verfahren auch im ökologischen Landbau einsetzbar, die Gefahr einer Schwefelüberdüngung nach der Flüssigmistausbringung entfällt, das Problem der Betonkorrosion in Flüssigmistkanälen und Lagerbehältern wird minimiert und die Methangasausbeute beim Einsatz des Flüssigmistes in Biogasanlagen erhöht. In Laborversuchen wird zunächst der Einsatz von Ca-Additiven und der Separation des Flüssigmistes zur Ausfällung des Carbonatpuffers untersucht. Schließlich wird an dem so vorbereiteten Flüssigmist der Säurebedarf bestimmt und der Einsatz von Alternativen zur Schwefelsäure untersucht. An dem so angesäuerten Flüssigmist wird das Biogasbildungspotential bestimmt. Die bereits etablierte Ansäuerungstechnik wird um ein Modul der Carbonatfällung und eine Separationseinheit erweitert. Die Anlage erhält für den praktischen Einsatz eine neu zu entwickelnde volumetrische Carbonatgehaltsbestimmung. Diese soll die anfällige und wartungsintensive pH-Wert-Messung mittels pH-Sonden ersetzen. Am Ende erfolgt eine ökonomische Bewertung der Ansäuerungstechnik unter Berücksichtigung der Methan- und Ammoniakemissionsminderung, des Biogaspotentials und einer Düngebilanzierung.

Wasserstoff in der Zink-/Schwefel-Industrie - Entwicklung und Testbetrieb einer Pilotanlage zur SO2-depolarisierten Elektrolyse in den Grillo-Werken Duisburg

Die SO2-depolarisierte Elektrolyse (SDE) ist ein vielversprechendes Wasserelektrolyse-Verfahren um aus einer SO2/H2O-Mischung Wasserstoff und Schwefelsäure zu erzeugen. Dieser Prozess ist thermodynamisch besonders effizient und ermöglicht die Erzeugung von Schwefelsäure, welche im Rahmen der Kreislaufwirtschaft auch direkt in einem Prozess zur Aufarbeitung zinkhaltiger Abfälle eingesetzt werden. Der Wasserstoff kann dann verwendet werden, um fossile Energieträger beim Schwefelsäurerecycling zu ersetzen. Im Rahmen des Projekts Sul4Fuel soll die innovative Technologie im industriellen Maßstab erprobt werden. Dazu ist eine Weiterentwicklung der an der finnischen Aalto-Universität im Technologiereifegrad (TRL) von 4-5 erprobten Technologie der SDE erforderlich. Die Umsetzung im Pilotmaßstab unter Erreichung von TRL 6-7 soll am Standort Duisburg der Grillo-Werke geschehen. Ziel des Teilvorhabens von Grillo ist es, eine SDE-Pilotanlage zu entwerfen, zu beschaffen und in Betrieb zu nehmen. Das Teilvorhaben von Grillo basiert auf den Ergebnissen der Teilvorhaben des DLR und HPs.

Wasserstoff in der Zink-/Schwefel-Industrie - Entwicklung und Testbetrieb einer Pilotanlage zur SO2-depolarisierten Elektrolyse in den Grillo-Werken Duisburg, Teilvorhaben: Engineering, Beschaffung und Inbetriebnahme einer Pilotanlage zur Schwefeldioxid depolarisierten Elektrolyse

Die SO2-depolarisierte Elektrolyse (SDE) ist ein vielversprechendes Wasserelektrolyse-Verfahren um aus einer SO2/H2O-Mischung Wasserstoff und Schwefelsäure zu erzeugen. Dieser Prozess ist thermodynamisch besonders effizient und ermöglicht die Erzeugung von Schwefelsäure, welche im Rahmen der Kreislaufwirtschaft auch direkt in einem Prozess zur Aufarbeitung zinkhaltiger Abfälle eingesetzt werden. Der Wasserstoff kann dann verwendet werden, um fossile Energieträger beim Schwefelsäurerecycling zu ersetzen. Im Rahmen des Projekts Sul4Fuel soll die innovative Technologie im industriellen Maßstab erprobt werden. Dazu ist eine Weiterentwicklung der an der finnischen Aalto-Universität im Technologiereifegrad (TRL) von 4-5 erprobten Technologie der SDE erforderlich. Die Umsetzung im Pilotmaßstab unter Erreichung von TRL 6-7 soll am Standort Duisburg der Grillo-Werke geschehen. Ziel des Teilvorhabens von Grillo ist es, eine SDE-Pilotanlage zu entwerfen, zu beschaffen und in Betrieb zu nehmen. Das Teilvorhaben von Grillo basiert auf den Ergebnissen der Teilvorhaben des DLR und HPs.

Auf dem Weg zu einem besseren DMS-Oxidationsmechanismus (ADOniS)

Wechselwirkungen zwischen dem Ozean und der Troposphäre sind für viele Prozesse in beiden Systemen wichtig. Ein Schlüsselprozess stellt der Austausch von Spurengasen zwischen der Atmosphäre und dem Ozean dar. Die Emission von Dimethylsulfid (DMS) stellt die größte natürliche Quelle für reduzierten Schwefel in die Atmosphäre dar. Dort kann DMS zu Schwefeldioxid, Schwefelsäure oder Methansulfonsäure oxidiert werden. Diese Verbindungen sind wichtige Vorläufersubstanzen für sekundäre Aerosole, die den natürlichen Strahlungshaushalt und die Wolkenbildung beeinflussen können. Die chemische Prozessierung, d.h. die sekundäre Bildung und Oxidation von DMS-Oxidationsprodukten, ist jedoch noch immer schlecht verstanden. Daher ist die Implementierung in aktuelle Multiphasenchemiemechanismen und Klimamodellen begrenzt, wodurch die aktuellen Vorhersagen noch sehr unsicher sind. Um die bestehenden Lücken in unserem Verständnis der DMS-Multiphasenchemie weiter zu schließen, zielt das Projekt ADOniS darauf ab, (i) fortgeschrittene Laboruntersuchungen zur Gas- und Flüssigphasenchemie von DMS-Oxidationsprodukten durchzuführen, (ii) ein fortgeschrittenes Multiphasen-DMS-Chemiemodul zu entwickeln und (iii) Prozess- und 3D-Modelluntersuchungen durchzuführen. Die vorgeschlagenen detaillierten Laboruntersuchungen konzentrieren sich auf die OH-Oxidation von Gasphasenprodukten der ersten Generation, Hydroperoxymethylthioformat (HPMTF) und Dimethylsulfoxid (DMSO), sowie auf die Bildung von DMS-Oxidationsprodukten der zweiten Generation. Die detaillierten mechanistischen Untersuchungen werden mit einem Freistrahl-Strömungsreaktor durchgeführt. Weitere kinetische und mechanistische Untersuchungen werden sich auf die Chemie von DMS-Oxidationsprodukten in der wässrigen Phase konzentrieren. OH Radikalreaktionen von HPMTF-Surrogaten werden mit Hilfe eines Laser Flash Photolysis - Long Path Absorption (LFP-LPA) Systems untersucht. Weiterhin wird die Oxidation von MSA/MS- durch OH(aq) und die Oxidation von MSIA/MSI- durch O3(aq) in wässriger Phase untersucht. Ferner soll die Aufnahme von wichtigen DMS-Oxidationsprodukten an verschiedenen Aerosolpartikeln durch Kammerstudien untersucht werden. Die Bildung von DMS-Oxidationsprodukten in der Gasphase und deren Aufnahme auf injizierten Aerosolpartikeln wird mit einem CI-APi-TOF Massenspektrometer gemessen. Basierend auf den Ergebnissen der Laborstudien wird ein fortschrittliches DMS-Reaktionsmodul entwickelt und anschließend im Multiphasenchemiemodell SPACCIM für detaillierte Prozessstudien eingesetzt. Die gewonnenen Erkenntnisse über die wichtigsten DMS-Oxidationswege werden dann die Grundlage für eine aktualisierte Behandlung DMS in globalen Klimachemiemodellen (CCMs), hier ECHAM-HAMMOZ, bilden. Schließlich werden Simulationen mit ECHAM-HAMMOZ die Auswirkungen des verbesserten DMS-Mechanismus auf die globale atmosphärische DMS-Chemie untersuchen und die Auswirkungen auf das Klima und die zukünftige Sensitivität bewerten.

Wasserstoff in der Zink-/Schwefel-Industrie - Entwicklung und Testbetrieb einer Pilotanlage zur SO2-depolarisierten Elektrolyse in den Grillo-Werken Duisburg, Teilvorhaben: Prozesssimulation, technische Studie und Gesamtprozessbetrachtung einer Pilotanlage zur SDE

Die SO2-depolarisierte Elektrolyse (SDE) ist ein vielversprechendes Wasserelektrolyse-Verfahren um aus einer SO2/H2O-Mischung Wasserstoff und Schwefelsäure zu erzeugen. Dieser Prozess ist thermodynamisch besonders effizient und ermöglicht die Erzeugung von Schwefelsäure, welche im Rahmen der Kreislaufwirtschaft auch direkt in einem Prozess zur Aufarbeitung zinkhaltiger Abfälle eingesetzt werden. Der Wasserstoff kann dann verwendet werden, um fossile Energieträger beim Schwefelsäurerecycling zu ersetzen. Im Rahmen des Projekts Sul4Fuel soll die innovative Technologie im industriellen Maßstab erprobt werden. Dazu ist eine Weiterentwicklung der an der finnischen Aalto-Universität im Technologiereifegrad (TRL) von 4-5 erprobten Technologie der SDE erforderlich. Die Umsetzung im Pilotmaßstab unter Erreichung von TRL 6-7 soll am Standort Duisburg der Grillo-Werke geschehen. Der Schwerpunkt des Teilvorhabens von HP ist es, während der Laborprototyp-Aufbauphase alle relevanten Daten zu identifizieren und zu sammeln, eine technische Studie für die Schwefeldioxid- depolarisierte Elektrolyse im Pilotmaßstab aufzustellen und den Prozess zu simulieren und zu bewerten. Das Teilvorhaben von HP basiert auf den Ergebnissen des Teilvorhabens der DLR; die Ergebnisse des Teilvorhabens von HP fließen in das Teilvorhaben von Grillo mit ein.

1 2 3 4 537 38 39