Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Chemische Verfahrenstechnik durchgeführt. Ziel des Projektes NITREB ist die Entwicklung eines neuen Verfahrens zur Kreislaufführung ionischer Stoffe in der Stahlindustrie. Das Verfahren stellt einen wichtigen Schritt hin zu nachhaltigem Wassermanagement in der Stahl- und metallverarbeitenden Industrie dar. Das zu entwickelnde Verfahren vermindert zum Ersten neben der Eutrophierung des Vorfluters durch Reduzierung der Nitrat-Emissionen. Zum zweiten wird durch das Verfahren entscheidend der Verbrauch an Beiz- und Neutralisationschemikalien reduziert. Das Verfahren soll auch für Teilströme der Abwasserbehandlung anwendbar sein, so dass eine Umsetzung in Ausbaustufen möglich wird. Das Abwasser der Beizanlage wird zunächst neutralisiert und dann in einer Verfahrenskombination derart behandelt, dass die Säuren nahezu komplett zurückgewonnen werden können. Unerwünschte Salze wie z.B. Sulfate werden durch die Selektivität der Membranen abgetrennt. Das erzeugte Konzentrat wird in eine Säure- und eine Laugenfraktion aufgespalten. Es können beide Fraktionen in den Prozess zurückgeführt werden. Die einzelnen Verfahrensschritte werden zunächst in Laborversuchen untersucht und bereits in diesem frühen Stadium zusammengeführt, so dass eine prinzipielle Machbarkeit in einem frühen Meilenstein nachgewiesen werden kann. In der Folge wird das Verfahren in einer Pilotanlage abgebildet, die im Bypass zu einer Abwasserbehandlungsanlage der Edelstahlproduktion betrieben wird. Erste Wirtschaftlichkeitsbetrachtungen zeigen aufgrund der hohen Einsparmöglichkeiten an Chemie und Abwassergebühren eine hohe Effizienz des neuen Verfahrens.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Textiltechnik durchgeführt. Das Ziel des BioFlaT Projekts ist die Entwicklung einer innovativen, biohybriden Flammschutzappretur basierend auf adhäsionsvermittelnden Peptiden (Ankerpeptiden). Eine Kernherausforderung im Brandschutz von Textilien ist, dass viele der verwendeten Flammschutzadditive umwelt- bzw. gesundheitsschädlich sind und durch sich verschärfende gesetzliche Regulierungen (z.B. REACH Verordnung) auf kurze als auch auf lange Sicht entfallen werden. Um dieser Entwicklung entgegenzuwirken, müssen innovative und nachhaltige Lösungen entwickelt werden, um die Menge an umwelt- und gesundheitsschädlichen Flammschutzadditiven zu reduzieren. Im Rahmen des BioFlaT Projekts soll die Ausrüstung von Textilien mit Flammschutzadditiven durch Ankerpeptide realisiert werden, um die Menge an eingesetzten Flammschutzadditiven zu reduzieren und die Flammschutzappretur haltbarer gegen externe Einflüsse (z.B. Waschvorgänge, UV-Licht, Witterungseinflüsse, Scheuern, Temperatur) zu machen. Ankerpeptide sind kleine amphipathische Peptiden (bis 100 Aminosäuren) die als Adhäsionsvermittler mit hoher Selektivität, Bindungsstärke und Belegungsdichte an ein breites Portfolio von Materialien binden (z.B. synthetische Polymere, Metalle, Keramiken, natürlich Materialien). Hierdurch ermöglichen Ankerpeptide die Ausrüstung von Textilien basierend auf Glas-, Aramid-, und Naturfasern (z.B. Leinen) mit funktionalen Einheiten wie Flammschutzadditiven. Die Materialfunktionalisierung durch Ankerpeptide erfolgt energieeffizient und ressourcenschonend bei Raumtemperatur in wässriger Lösung. Das Ziel des BioFlaT Projekts ist durch die Entwicklung einer biohybriden Flammschutzappretur, die Flammschutzappretur von Textilien nachhaltiger, energieeffizienter und haltbarer zu gestalten und so die sich verschärfende gesetzliche Regulierung der umwelt- bzw. gesundheitsschädlichen Flammschutzadditive zu adressieren und final die Textilindustrie im Rheinischen Revier wettbewerbsfähiger und nachhaltiger aufzustellen.
Das Projekt "Einsatz von integrierten Biosensoren mit Antikoerper- und makrocyclischen Rezeptorbibliotheken bei der Messung von Algenzellen und Toxinen in Wasser" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Fachbereich 07 Umwelt und Gesellschaft, Institut für Ökologie und Biologie, Fachgebiet Ökotoxikologie durchgeführt. General Information: The objective of the proposed work is to develop biosensor systems for the reliable monitoring of algae toxins and cells. Diagnosis will also be carried out using newly developed immunotoxicity assay. The use of an integrated electronic sensing principle is a very flexible approach, allowing the sample to be probed in many ways. The proposed approach is to use simple, disposable electrochemical affinity sensors. Affinity sensors are based on a receptor molecule specifically recognizing and binding an analyte. This is a very sensitive method and for biosensors the receptor most commonly used is an antibody. Recently a number of chemically or biochemically derived artificial receptors have been developed and their use in the construction of sensors has led to a new class of bio mimetic sensors. The principle of producing immunosensors has been demonstrated for other applications and is considered to have a high chance of success. Two state-of-the-art approaches are proposed for the production of receptor molecules. This is clearly a difficult task, but one which we believe will be successful. The proposers have considerable experience in antibody production, and significant experience in combinatorial synthesis. Both approaches have been demonstrated for use with compounds which are not dissimilar to those considered for this project. These approaches have the added advantage that they can be adapted to airy group of compounds. The biosensor array will be combined with multivariate analysis software for use in analyzing real samples taken from a number of sites throughout Europe. The instruments will be compared with current laboratory based methods such as chromatography. Immunotoxicity assay method will also be developed. The toxic and non-toxic algae will be fed to bivalves. The hemocytes will be tested concerning their phagozytotic activity. By recording immunological resistance (phagocytosis) in terms of quality and quantity, it is possible to detect biotoxins and their effects on the aquatic organisms. Experiments with reference biotoxins will be done with microcystin and anatoxin. Measurement of phagocytic activity offers ample opportunities for detecting unknown biotoxins by their influence on mussel immunology and hence a sensor can be constructed from this assay. Prime Contractor: Cranfield University, Biotechnology Centre; Cranfield.
Das Projekt "Teilvorhaben: Entwicklung einer hochrepetierenden frequenzverdoppelten Strahlquelle" wird vom Umweltbundesamt gefördert und von Amphos GmbH durchgeführt. Das Vorhaben hat die Reduzierung der spezifischen Produktionskosten von Solarzellen auf Basis von kristallinem Silizium zum Ziel. Dieses Projekt fokussiert dabei die Emitter-Diffusion und das anschließende lokale Hochdotieren mittels Laser. Hier sollen durch innovative Prozesse und Anlagen sowohl der Solarzellenwirkungsgrad als auch der Anlagendurchsatz erhöht werden.
Das Projekt "Teilvorhaben: Prozessentwicklung und Integration" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. Ziel des Vorhabens ist die Entwicklung von Hochdurchsatz-Verfahren zur Diffusion und Laserdotierung zur Herstellung von Hocheffizienz-Emittern mit niedriger Ladungsträgerrekombination. Diese Technologien sollen es ermöglichen das Effizienzpotential von homogenen und selektiven Hocheffizienz-Emittern, welche erhöhte Diffusions-Prozesszeiten bzw. komplexere Prozessabläufe mit sich bringen, wirtschaftlich zu erschließen.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von IS Insect Services GmbH durchgeführt. Die Kirschessigfliege Drosophila suzukii ist ein invasiver Schädling aus Asien, der sich seit 2008 rasant in ganz Europa verbreitet. 2014 verursachte er bereits erhebliche Schäden in deutschen Obst- und Rebenanlagen, europaweit sind hohe Ertragsverluste zu verzeichnen. Für die Eiablage werden von D. suzukii reifende Früchte bevorzugt, bei 10-15 Generationen pro Jahr können die Weibchen 300 bis 600 Eier legen. Aus den Eiern schlüpfen nach 1-3 Tagen kleine Maden, die sich vom Fruchtfleisch ernähren. Durch diesen Larvenfraß wird der Hauptschaden verursacht, die Früchte fallen in der Folge zusammen und werden matschig. Da reife Früchte betroffen sind, ist eine Bekämpfung äußerst schwierig und bislang wenig wirksam, derzeit stehen keine gut wirksamen Bekämpfungsmaßnahmen zur Verfügung. Ziel des Projektes ist daher die Etablierung einer alternativen, umweltschonenden Bekämpfungsmethode basierend auf der sog. RNA Interferenz (RNAi) durch Applikation kleiner doppelsträngiger RNA. Dabei sollen die RNA Moleküle als Futter in einer Lockstofffalle angeboten werden. Für die Entwicklung der Falle sollen Attraktantien identifiziert werden (z. B. aus reifenden Früchten oder von Fermentationsprodukten), die in geeigneten Dispensersystemen in den Lockstofffallen eingesetzt werden können. Die Bekämpfung soll auf einem spezifischen 'attract & kill' Verfahren beruhen.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen, Fakultät Agrarwirtschaft, Volkswirtschaft und Management durchgeführt. Durch die extensive Grünlandbewirtschaftung, häufig mit Mähzeitpunkten ab Mitte Juni, haben sich die Herbstzeitlose (HZL) und das Jakobskreuzkraut (JKK) vermehrt. Alle ihre Pflanzenteile sind giftig und können bei Nutztieren zum Tod führen. Problematisch sind die Bestandteile im Heu, da diese nicht mehr von den Tieren selektiert werden können. Durch Mulchen im zeitigen Frühjahr kann die HZL zurückgedrängt werden, was aber im Konflikt mit den naturschutzfachlichen Bewirtschaftungsvorgaben stehen kann. Ferner ist dadurch der Ertrag reduziert und das Heu kann immer noch mit HZL verunreinigt sein. Das JKK kann durch Ausreißen, zielgerichtete Mähzeitpunkte oder chemisch zurückgedrängt werden. In dem Vorhaben werden Algorithmen zur Analyse von Luftbildern von Grünland mit HZL und JKK entwickelt. Für die HZL werden die Flächen im Herbst zum Zeitpunkt der Blüte und im Frühjahr zum Zeitpunkt des Blattaustriebs, Bestände mit JKK werden im Sommer zu Blühbeginn mit einer Drohne überflogen. Die Flächen werden RGB- und Spektral-Kameras fotografiert. Ziel ist es, aus den Luftbildern Giftpflanzen-Bestandskarten zu erstellen. Aus diesen werden Applikationskarten für eine nicht-chemische einzelpflanzen- bzw. teilflächenspezifische Bekämpfung abgeleitet.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von RLP AgroScience GmbH durchgeführt. Die Kirschessigfliege Drosophila suzukii ist ein invasiver Schädling aus Asien, der sich seit 2008 rasant in ganz Europa verbreitet. 2014 verursachte er bereits erhebliche Schäden in deutschen Obst- und Rebenanlagen. Da reife Früchte betroffen sind, ist eine Bekämpfung äußerst schwierig und bislang wenig wirksam. Ziel des Projektes ist daher die Etablierung einer alternativen, umweltschonenden Bekämpfungsmethode basierend auf der sog. RNA Interferenz (RNAi) durch Applikation kleiner doppelsträngiger RNA. Die Spezifität der siRNAs für D. suzukii wird molekular geprüft, um eine Wirkung auf andere (Nutz)Insekten auszuschließen. Die RNA Moleküle sollen als Futter in einer Lockstofffalle angeboten werden. Für die Entwicklung der Falle sollen Attraktantien identifiziert werden (z. B. aus reifenden Früchten oder von Fermentationsprodukten), die in geeigneten Dispensersystemen in den Lockstofffallen eingesetzt werden können. Die Bekämpfung soll auf einem spezifischen 'attract & kill' Verfahren beruhen.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von PCCell GmbH durchgeführt. Ziel des Projektes NITREB ist die Entwicklung eines neuen Verfahrens zur Kreislaufführung ionischer Stoffe in der Stahlindustrie. Das Verfahren stellt einen wichtigen Schritt hin zu nachhaltigem Wassermanagement in der Stahl- und metallverarbeitenden Industrie dar. Das zu entwickelnde Verfahren vermindert zum Ersten neben der Eutrophierung des Vorfluters durch Reduzierung der Nitrat-Emissionen. Zum zweiten wird durch das Verfahren entscheidend der Verbrauch an Beiz- und Neutralisationschemikalien reduziert. Das Verfahren soll auch für Teilströme der Abwasserbehandlung anwendbar sein, so dass eine Umsetzung in Ausbaustufen möglich wird. Das Abwasser der Beizanlage wird zunächst neutralisiert und dann in einer Verfahrenskombination derart behandelt, dass die Säuren nahezu komplett zurückgewonnen werden können. Unerwünschte Salze wie z.B. Sulfate werden durch die Selektivität der Membranen abgetrennt. Das erzeugte Konzentrat wird in eine Säure- und eine Laugenfraktion aufgespalten. Es können beide Fraktionen in den Prozess zurückgeführt werden. Die einzelnen Verfahrensschritte werden zunächst in Laborversuchen untersucht und bereits in diesem frühen Stadium zusammengeführt, so dass eine prinzipielle Machbarkeit in einem frühen Meilenstein nachgewiesen werden kann. In der Folge wird das Verfahren in einer Pilotanlage abgebildet, die im Bypass zu einer Abwasserbehandlungsanlage der Edelstahlproduktion betrieben wird. Erste Wirtschaftlichkeitsbetrachtungen zeigen aufgrund der hohen Einsparmöglichkeiten an Chemie und Abwassergebühren eine hohe Effizienz des neuen Verfahrens.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von SIMA-tec GmbH durchgeführt. Ziel des Projektes NITREB ist die Entwicklung eines neuen Verfahrens zur Kreislaufführung ionischer Stoffe in der Stahlindustrie. Das Verfahren stellt einen wichtigen Schritt hin zu nach-haltigem Wassermanagement in der Stahl- und metallverarbeitenden Industrie dar. Das zu entwickelnde Verfahren vermindert zum Ersten neben der Eutrophierung des Vorfluters durch Reduzierung der Nitrat-Emissionen. Zum zweiten wird durch das Verfahren entscheidend der Verbrauch an Beiz- und Neutralisationschemikalien reduziert. Das Verfahren soll auch für Teilströme der Abwasserbehandlung anwendbar sein, so dass eine Umsetzung in Ausbaustufen möglich wird. Das Abwasser der Beizanlage wird zunächst neutralisiert und dann in einer Verfahrenskombination derart behandelt, dass die Säuren nahezu komplett zurückgewonnen werden können. Unerwünschte Salze wie z.B. Sulfate werden durch die Selektivität der Membranen abgetrennt. Das erzeugte Konzentrat wird in eine Säure- und eine Laugenfraktion aufgespalten. Es können beide Fraktionen in den Prozess zurückgeführt werden. Die einzelnen Verfahrensschritte werden zunächst in Laborversuchen untersucht und bereits in diesem frühen Stadium zusammengeführt, so dass eine prinzipielle Machbarkeit in einem frühen Meilenstein nachgewiesen werden kann. In der Folge wird das Verfahren in einer Pilotanlage ab-gebildet, die im Bypass zu einer Abwasserbehandlungsanlage der Edelstahlproduktion betrieben wird. Erste Wirtschaftlichkeitsbetrachtungen zeigen aufgrund der hohen Einsparmöglichkeiten an Chemie und Abwassergebühren eine hohe Effizienz des neuen Verfahrens.
Origin | Count |
---|---|
Bund | 878 |
Type | Count |
---|---|
Förderprogramm | 878 |
License | Count |
---|---|
offen | 878 |
Language | Count |
---|---|
Deutsch | 878 |
Englisch | 82 |
Resource type | Count |
---|---|
Keine | 455 |
Webseite | 423 |
Topic | Count |
---|---|
Boden | 609 |
Lebewesen & Lebensräume | 609 |
Luft | 475 |
Mensch & Umwelt | 878 |
Wasser | 473 |
Weitere | 878 |