Bei dem Datensatz handelt es sich um Fernerkundungsdaten aus dem Copernicus-Programm der Europäischen Kommission und der Europäischen Weltraumorganisation, die für das Gebiet von Sachsen-Anhalt aufbereitet wurden. Die Sentinel-2 Satelliten des Copernicus-Programm liefern multispektrale Aufnahmen im Wellenlängenbereich des sichtbaren Licht (VIS) und nahen Infrarotbereich (NIR) aus denen nahezu wolkenfreie Mosaikbilder erstellt werden. Diese Daten finden insbesondere in der Forst-, Wasser-, und Agrarwirtschaft Anwendung um z.B. zeitliche Veränderungen zu beobachten.
Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Lang- und kurzfristiger Einfluss der Vegetation auf die Landschaftsentwicklung abgeleitet aus Thermochronologie und Fernerkundung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Philipps-Universität Marburg, Fachgebiet Klimageographie und Umweltmodellierung.Dieser Antrag skizziert ein Projekt, das den Zielen des SPP 'EarthShape' folgt, indem es die Rolle von Biota für die Formungsprozesse der Erde untersucht. Diese Studie zielt darauf ab, (i) die ursprüngliche Annahme von EarthShape zu testen, dass alle primären Arbeitsgebiete eine ähnliche langfristige tektonische (Gesteinshebungs-) Geschichte aufweisen und (ii) den Einfluss von Biota auf Landschaften entlang eines ausgeprägten klimatischen und ökologischen Gradienten in der chilenischen Küstenregion über Jahrtausende zu quantifizieren. Die Annahme einer identischen tektonischen (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete impliziert, dass laterale Variationen der Topographie und der stattfindenden Erdoberflächenprozesse ausschließlich durch Klima und Biota gesteuert werden/wurden. Tektonische Studien und thermochronologische Pilotdaten, legen nahe, dass dies möglicherweise nicht der Fall ist, und somit jedwede Schlussfolgerung über Biota- Topographie-Erosionsbeziehungen unvollkommen ist. Wir werden Festgesteins- Niedrigtemperatur-Thermochronologie (Apatit (U-Th)/He- und Fission-Track-Methode) und thermisch-kinematische Modellierung (PECUBE) anwenden, um die tektonische (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete in EarthShape über Millionen Jahre zu rekonstruieren. Die Ergebnisse sind sowohl für Beobachtungs- als auch für Modellierungsstudien, die großskalige Tektonik-Klima-Biota-Interaktionen und Landschaftsentwicklungen untersuchen (vgl. Phase-II-EarthShape-Anträge: PIs Ehlers und Hickler, Schaller und van der Kruk, Mutz und Niedermeyer), von großer Bedeutung. Detritische (Tracer) Thermochronologie wird in allen primären Arbeitsgebiete von EarthShape angewendet, um die antreibenden Kräfte von Erdoberflächenprozessen über Jahrtausende zu identifizieren. Von besonderem Interesse ist hierbei die Untersuchung der Beziehungen zwischen Vegetationsbedeckung, Geomorphologie, Erosion und Sedimenttransport. Dies geschieht durch statistische Zuordnung der detritischen Altersverteilungen zu den Herkunftsgebieten in den untersuchten Einzugsgebieten. Geomorphologische und biotische Einflussfaktoren werden aus verschiedenen Fernerkundungsdaten abgeleitet. Geomorphologische Erosionsfaktoren werden aus digitalen Höhenmodellen (ASTER, LiDAR) berechnet, während Vegetations-Erosionsfaktoren aus der Analyse multispektraler Satellitendaten (Sentinel, Landsat) in Verbindung mit Feldarbeit abgeleitet werden. Hieraus resultierende relative Erosionskarten können mit kosmogenen Nuklid-Erosionsraten kombiniert werden (z. B. EarthShape Phase I + II, PIs Schereler et al., Schaller und van der Kruk), um hochaufgelöste Erosionsraten-Karten für alle primären Arbeitsgebiet von EarthShape abzuleiten. Wir erwarten, dass dieser innovative multidisziplinäre Ansatz (Kombination von Thermochronologie und Fernerkundungsdaten) unser Verständnis der tektonischen, klimatischen und biologischen Landschaftsdynamik verbessern wird.
Das Projekt "Erstellung einer jährlichen und langzeitigen Zeitreihe von Bergstürzen und Hangerosion in den NW Argentinischen Anden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Erd- und Umweltwissenschaften.Dieses deutsch-argentinische Gemeinschaftsprojekt fokussiert auf den Ursachen der räumlichen Verteilung von großen Massenbewegungen in den Anden von NW Argentinien, einer durch zahlreiche Bergsturzablagerungen charakterisierten Region mit ausgeprägten E-W und N-S-Gradienten hinsichtlich Topographie, Relief, Niederschlag und Vegetationsbedeckung. Das Arbeitsgebiet ist außerdem seismisch aktiv und wurde von 2 großen Erdbeben in den letzten 6 Jahren erfasst (M6.3 in 2010 and M5.8 in 2015) und bietet somit die einmalige Gelegenheit, verschiedene Steuerungsfaktoren von Bergstürzen durch eine Kombination von Feld- und fernerkundlichen Arbeiten zu erkunden. Die Landschaftsentwicklung von Hochgebirgsregionen wird oft sehr stark durch Bergsturzaktivität geprägt, allerdings werden die Auslösemechanismen z.T. kontrovers diskutiert. Bisherige Studien zeigen, dass Bergsturzcluster durch seismische und/oder klimatisch gesteuerte Prozesse ausgelöst werden können, allerdings spielen lithologische und strukturelle Parameter, aber auch die klimagesteuerte Vegetationsbedeckung eine Rolle. Aus diesem Grunde fokussiert dieser Antrag auf zwei, miteinander verbundenen Arbeitshypothesen: Wir wollen erstens testen, ob die Verbreitung von Bergsturzablagerungen und rezenten Massenbewegungen in den nordwest-argentinischen Anden vor allem auch durch strukturell-lithologische und vegetationsbedingte Faktoren bestimmt ist. Zweitens soll geprüft werden, ob kosmogene Nukliddatierungen dazu beitragen können, sub-rezente sowie Bergsturzereignisse auf Zeitskalen von mehreren hundert bis tausend Jahren zu evaluieren und somit Bereiche wiederholter Bergsturzaktivität zu dechiffrieren. Diese Charakterisierung von Bergstürzen und Hanginstabilitäten auf verschiedenen räumlichen und zeitlichen Skalen sind für die Bewertung von klimatischen und seismischen Extremereignissen und damit verbundenen kaskadierenden Effekten von großer Wichtigkeit. Diese Arbeiten zu Massenbewegungen sollen mit Hilfe einer Kombination von Geländebegehungen, optischen und Radar-Fernerkundungsdaten (Luftphotos, ENVISAT, TerraSAR-X, Sentinel, ALOS) für eine Zeitreihe von 2001 bis heute erarbeitet werden. Weiterhin werden geochemische Analysen an detritischem Quarz aus verschiedenen Einzugsgebieten durchgeführt, um Erosionsraten der letzten hundert bis tausend Jahre zu erfassen und somit die möglichen Auslösemechanismen zu bestimmen und die räumliche Bergsturzverteilung auf unterschiedlichen Zeitskalen zu bewerten.
Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Biodiversität über Skalen hinweg erkunden (SEBAS)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Biochemie und Biologie.In den vergangenen Jahrzehnten wurden die meisten Grünlandökosysteme in Mitteleuropa durch höhere Düngergaben und durch häufigeres Mähen oder Beweiden verändert. Diese Landnutzungs-Intensivierung hat zwar die Bereitstellung der Ökosystemleistung 'Futterproduktion' verbessert, jedoch die Biodiversität und die Bereitstellung anderer Ökosystemleistungen negativ beeinflusst. Vor allem aufgrund räumlicher Diskrepanzen zwischen ökologischen Prozessen und Managementeinheiten in gekoppelten sozial-ökologischen Systemen fehlt bisher ein mechanistisches Verständnis zu Effekten der Landnutzungs-Intensivierung auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen. In unserem Projekt SEBAS wollen wir dieses mechanistische Verständnis verbessern, indem wir plotbasierte ökologische Forschung zur Landnutzungsintensität und zu sechs grundlegenden Biodiversitätsvariablen (engl. EBVs) mit einer satellitenbasierten Fernerkundung dieser Proxies verbinden. Wir werden Beziehungen zwischen funktionaler und struktureller Diversität und der Ökosystemleistung 'Futterproduktion' (oberirdische Biomasse bzw. Primärnettoproduktion) für managementrelevante Flächen analysieren. Dies sind Wiesen- bzw. Weideflächen, landwirtschaftliche Betriebe und Landschaften. Wir stellen die Hypothesen auf, dass (i) die sechs EBVs auf mehreren räumlichen Skalen unter Verwendung multimodaler Satellitenbild-Zeitreihendaten abgeleitet werden können, die mit vorhandenen und neu erhobenen Daten zur Landnutzungsintensität und zu EBVs kalibriert und validiert wurden; und dass (ii) Auswirkungen der Landnutzung auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen über räumliche Skalen hinweg variieren. Hierbei dürfte die funktionale und strukturelle Diversität eine Schlüsselrolle für die Höhe und zeitliche Stabilität der Futterproduktion spielen. Das Projekt wird räumlich explizite EBV-Produkte auf Satelliten- und UAV-Basis liefern sowie neue Methoden entwickeln, die auf multiskalierten und multimodalen Fernerkundungs-Datensätzen (PlanetScope, RapidEye, Sentinel 1 & 2, Landsat, MODIS) sowie auf maschinellen Lern- und Hybridmodellen basieren. Durch Raum-für-Zeit-Substitutionen für Klimawandel und Landnutzungswandel werden wir zudem interaktive Auswirkungen dieser beiden wichtigsten Treiber des Globalen Wandels auf die Beziehung der Biodiversität zu Ökosystemfunktionen und -leistungen analysieren. Hierfür werden wir direkte und indirekte (biodiversitätsvermittelte) Auswirkungen der beiden Treiber auf die Futterproduktion mittels eines sozial-ökologischen Systemansatzes formalisieren und über Strukturgleichungsmodellen quantifizieren. Auf diese Weise werden wir ein tieferes Verständnis der Ökosystemfunktionen und -leistungen in mitteleuropäischen Grünländern erlangen.
Das Projekt "Beobachtung Pflanzlicher Photosynthese mit satellitengestützten Messungen der Sonnen Induzierten Fluoreszenz (CropSIF)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Neben Maßnahmen, die die Produktivität von Agrarflächen erhöhen, werden neue objektive Methoden zur kontinuierlichen Überwachung globaler landwirtschaftlicher Ressourcen dringend benötigt. Eine besondere Rolle nimmt dabei die Photosyntheseleistung (gemessen als Bruttoprimärproduktion) der Kulturpflanzen ein, da sie die maximal mögliche Menge an Nahrung und Treibstoff darstellt, die durch landwirtschaftliche Systeme bereit gestellt werden kann. Desweiteren ist sie ein guter Indikator für Ernteerträge und Stress. In den vergangenen Jahrzehnten wurden auf Reflektivitätsdaten beruhende optische Fernerkundungsmethoden benutzt um landwirtschaftliche Ressourcen abzuschätzen. Spektral aufgelöste Reflektivitätsdaten lassen auf biochemische und strukturelle Eigenschaften der Vegetation schließen, die wiederum auf die potentielle Photosyntheseleistung hindeuten, und sie sind die Grundlage zur Bewertung des Zustands der Pflanzen und ihrer phenologischen Entwicklungsstufe in hoher räumlicher Auflösung. Basierend auf diesem Messprinzip sollen die Sentinel-2 Satelliten (2015 gestartet) die Zugpferde der operationellen Agrarüberwachung in den kommenden Jahrzehnten werden. Es ist jedoch bekannt, dass Vegetationsparameter aus der Fernerkundung, die auf spektralen Reflektanzen beruhen, nicht die komplexen und hoch variablen physiologischen Abläufe der Photosynthese erfassen können. Ergänzend zu Reflektivitätsmessungen sind seit Kurzem globale weltraumgestützte Messungen von sonneninduzierter Chlorophyllfluoreszenz (Englisch sun-induced chlorophyll fluorescence, SIF) möglich. Wie gezeigt werden konnte, besitzt SIF eine höhere Sensitivität gegenüber der Photosyntheseaktivität auf Agrarflächen als andere Parameter oder Modelle. Das Instrument TROPOMI (Tropospheric Monitoring Instrument), das ab Mitte 2017 auf dem EU Copernicus Sentinel 5-Vorläufersatelliten fliegen wird, wird die Messung von SIF in einer sehr viel höheren räumlichen und zeitlichen Auflösung als alle bisherigen Instrumente/Missionen ermöglichen. Somit stellt TROPOMI einen Meilenstein für die Einschätzung von Photosynthese im Allgemeinen, und der Produktivität von Nutzpflanzen im Besonderen, dar. Die Kombination von TROPOMI und Sentinel-2 Daten wird eine auf Beobachtungen basierende, globale Beobachtung der Photosyntheseaktivität auf Agrar-, Gras- und Weideflächen mit einer bisher nie dagewesenen räumlichen und zeitlichen Auflösung und Genauigkeit erlauben. Das Projekt CropSIF wird Nutzen aus den besonderen Möglichkeiten ziehen, die diese Konstellation von Instrumenten in naher Zukunft bieten wird, um die Produktivität von Agrarpflanzen und klimatischer Einflüsse darauf abzuschätzen. Wir werden zeitlich aufgelöste Karten der Bruttoprimärproduktion der Nutzpflanzen erstellen, die dann der Analyse von Effekten extremer Klimaereignisse auf die Produktivität in verschiedenen Agrargebieten der Erde dienen werden.
Das Projekt "Forschergruppe (FOR) 2630: Understanding the global freshwater system by combining geodetic and remote sensing information with modelling using a calibration/data assimilation approach (GlobalCDA), Satellitengestützte Schätzung von Abfluss und Oberflächenspeicher: Gesamterfassung von Einzugsgebieten mit optimaler raum-zeitlicher Auflösung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Geodätisches Institut.Fortschritte in der hydrologischen Modellierung werden durch eine unzureichende Beobachtungsgrundlage hydrologischer Parameter eingeschränkt. Wenn weltweit die Datensammlung durch in-situ-Netzwerke nachlässt, müssen Satellitenverfahren zur Hilfe kommen. Obwohl Satelliten naturgemäß global und synoptisch beobachten, unterliegen auch sie gewissen Beschränkungen der Genauigkeit oder der raum-zeitlichen Auflösung. Dieses Projekt beabsichtigt, die Datengrundlage für zwei relevante hydrologischen Variablen, Abfluss und Oberflächenspeicher, durch innovative Modellierung von Satellitenaltimetrie (Wasserpegel) und Fernerkundung (Oberflächenvariationen) erheblich zu verbessern. Dazu sollte die existierende Methodik für Raum-Zeit-Verdichtung von Abflussschätzungen aus Altimetrie auf komplette Flusseinzugsge-biete erweitert werden. Die neue Methodik soll in der Lage sein, Nicht-Stationaritäten zu berücksichtigen, die durch menschliches Eingreifen, natürliche Prozesse oder Klimawandel bedingt sind. Angesichts der Fülle an neuen und künftigen Satellitenmissionen, insbesondere der operationellen Sentinel-Reihe, ist dieses Forschungsvorhaben sowohl inhaltlich relevant als auch hochaktuell.
Die Datensätze bilden die zwischen Oktober 2017 und September 2024 infolge von Sturmschäden, Schneebruch und Borkenkäferbefall entstandenen Störungsflächen im Wald sowie Flächen mit Vitalitätsveränderungen. Diese Flächen stellen das Resultat einer mithilfe von Sentinel-2-Daten durchgeführten teilautomatisierten Satellitenbildauswertung dar. Dabei handelt es sich um Ergebnisse aus dem durch das Kompetenzzentrum Wald und Forstwirtschaft (Sachsenforst) initiierten „Sentinel-2-Projekt“. Ziel dieses Projekts war die Lokalisierung der zwischen Herbst 2017 und Herbst 2024 entstandenen Störungsflächen und Flächen mit Vitalitätsveränderungen im sächsischen Gesamtwald.
Das Projekt "Nutzung von Fernerkundungs- und Klimadaten zur Beschreibung von Ertrags- und Qualitätsdynamiken im Grünland (SatGrass)" wird/wurde gefördert durch: Bundesministerium für Landwirtschaft, Regionen und Tourismus / Bundesministerium für Nachhaltigkeit und Tourismus. Es wird/wurde ausgeführt durch: Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein (HBLA).Zielsetzung: Seit dem Jahr 2014 sind mehrere Satelliten (Sentinel-1, -2, -3, -4 und -5p) des Copernicus-Programms der europäischen Raumfahrtbehörde (ESA) gestartet worden. Diese Satelliten ermöglichen komplexe Erdbeobachtungen in sehr hoher räumlicher Auflösung und in zeitlich kurzen Abständen. In diesem Projekt wird untersucht ob die aufbereiteten Daten der Satellitenpaare Sentinel-1 und -2 Zusammenhänge zu Ertrag und Futterqualität im Grünland zeigen. Mit Hilfe des C-Band SAR (Synthetic Aperture Radar) der Sentinel-1 Satelliten, wird die Erdoberfläche mit einer Wellenlänge von 6 Zentimetern abgetastet. Anhand der Zeitverzögerung sowie der Stärke des reflektierten Signals kann vor allem auf physikalische Eigenschaften der reflektierenden Oberflächen geschlossen werden. Bei den beiden Sentinel-2 Satelliten handelt es sich um optische Erdbeobachtungssatelliten mit einem multispektralen Aufnahmegerät, welches Spektralsignaturen von 13 unterschiedlichen Wellenlängen aufzeichnet. Durch verschiedene Bandkombination stehen Informationen zu physikalischen und chemischen Eigenschaften der reflektierenden Oberflächen zur Verfügung. Wichtige Ertrags und Qualitätsparameter von Grünlandaufwüchsen sollen anhand von diesen Informationen besser und einfacher abgeschätzt werden. Zusätzlich zu den Satellitendaten werden wichtige agrarmeteorologische Kennzahlen wie Niederschlag, Globalstrahlung, Evapotranspiration und die Klimatische Wasserbilanz mit eine mobilen Wetterstation am Versuchsfeld aufgezeichnet. Durch die Kombination dieser Daten soll eine möglichst genaue und einfache, nichtinvasive Methode zur Abschätzung von Ertrag und Qualität im Grünland geschaffen werden. Genaue Informationen über die Wachstumsdynamiken von Grünlandmischbeständen ermöglichen es, wichtige Managementaufgaben, wie Grünlandpflege, Düngung und Nutzung, sehr präzise durchführen zu können. Bedeutung des Projekts für die Praxis: Aufgrund der derzeitig hohen Aktualität der Thematik satellitengestützte Fernerkundung, ist es von großer Bedeutung auch in der Grünlandforschung einen Schwerpunkt in diese Richtung zu setzen. Das offensichtlich enorme Potential, Daten der Sentinel-Mission auch im Grünlandmanagement nutzen zu können, wird mithilfe dieses Projektes überprüft.
Das Projekt "Entwicklung erweiteter social-ökologischer Szenarien für Veränderungen in der Biodiversität/Ökosystemservice Verbindung in Seen der Nord Temperierten Zone: Eine Studie für das nächste halbe Jahrhundert" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei.Im Kontext des globalen Wandels wird neben dem Erwärmungstrend von einer Zunahme von Extremereignissen (Stürme, Hitzewellen) ausgegangen. Wir planen die Entwicklung von Szenarien, zur Bedeutung der Überlagerung kurzfristiger Extremereignisse und langfristiger trendhafter Veränderungen für die Biodiversität, Funktionalität und Resilience planktischer Gemeinschaften in Seen. Wir nehmen an, daß der Zeitpunkt, die Höhe und die Frequenz einer Störung entscheidend für deren Auswirkungen sind- und diese systemspezifisch sind. Wir basieren unsere Studien auf der statistischen Modellierung empirischer Langzeitdaten (mehrere Dekaden) und einer temporalen Resolution von Minuten (automatische in situ Messungen von GLEON Seen) bis Wochen/Monate (größer als 34 Seen in der Nord Temperierten Zone; Plankton Gemeinschaften und wesentliche abiotischen Treiber wie Temperatur und Nährstoffe). Mit Hilfe von Satelliten Daten planen wir die Erfassung der Stabilität von Seen in Hinblick auf ihren trophischen Zustand (klar / trüb) im Kontext der globalen Erwärmung für Seen weltweit. Das Projekt wird einen innovativen methodischen Rahmen entwickeln, der einen überregionalen Ansatz für Szenerienplanung für Süßwasserökosysteme und einen Backcasting Ansatz zur Szenarienplanung kombiniert, der die überregionalen Faktoren bei der Gestaltung von Wegen zu einer Nachhaltigkeitsvision von Süßwasserökosystemen berücksichtigt. Die Methodik wird in Fallstudien in Deutschland, Schweden und Kanada angewendet. Zu den erwarteten Ergebnissen gehören Gestaltungsprinzipien für partizipative Szenarioprozesse zur Unterstützung des transformativen Lernens hin zu einer nachhaltigen Nutzung von Süßwasser-Ökosystemdienstleistungen und Charakteristika von Mensch-Süßwasser-Wechselwirkungen, die die Resilienz von SES in Situationen mit hohem Nutzungskonflikt und Unsicherheiten bestimmen.
Die Europäische Weltraumorganisation (ESA) stellt innerhalb des Copernicus-Programms kostenfrei Satellitendaten der Missionen Sentinel (dt. Wächter) zur Verfügung. Der LGV bereitet die Daten zur einfacheren Nutzung quartalsweise auf. Originär können die Satellitendaten über die nationale Plattform CODE-DE (Copernicus Data and Exploitation Platform – Deutschland) bezogen werden. Datengrundlage: - Sentinel-2 L2A: Multispektrale, atmosphärisch korrigierte Daten - Georeferenziertes Mosaik - Kachel-Anzahl: 25 - Kachel-Größe: 8 km x 8 km - Kachel-Auswahl: Aktualität und Grad der Wolkenbedeckung - Farbdarstellung: RGB, CIR, NDVI - Bodenauflösung: 10m - Farbtiefe: 8 bit RGB (Red Green Blue): Die Bandkombination aus Rot (B4), Grün (B3) und Blau (B2) bildet die menschliche Farbwahrnehmung nach. Gesunde Vegetation wird grün, urbane Flächen werden weiß / grau und Wasserflächen werden, abhängig der Trübung, blau dargestellt. CIR (Color Infrared): Die Bandkombination aus nahem Infrarot (B8), Rot (B4) und Grün (B3) hebt die Vegetation hervor. Diese reflektiert aufgrund des Chlorophyllgehalts der Pflanzen im nahen Infrarotbereich besonders stark und wird rötlich dargestellt. Urbane Flächen erscheinen cyan-blau / grau und Wasserflächen dunkelblau. NDVI (Normalized Difference Vegetation Index): Der NDVI ist ein häufig angewendeter Index, welcher zur Einschätzung der Vegetation herangezogen wird. Er berechnet sich aus den Bändern Nahes Infrarot (B8) und Rot (B4): NDVI = (NIR-Rot)/(NIR+Rot) <b>Hinweis</b> "Keine Daten verfügbar": Wenn innerhalb eines Quartals ausschließlich Daten mit hoher Wolkenbedeckung vorliegen, wird kein Mosaik erzeugt. Dies ist insbesondere in Wintermonaten möglich. [© Contains modified Copernicus Sentinel data [2018-2024], processed on CODE-DE]
Origin | Count |
---|---|
Bund | 108 |
Land | 15 |
Type | Count |
---|---|
Förderprogramm | 99 |
Text | 1 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 4 |
offen | 111 |
Language | Count |
---|---|
Deutsch | 28 |
Englisch | 95 |
Resource type | Count |
---|---|
Archiv | 2 |
Dokument | 7 |
Keine | 69 |
Webdienst | 7 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 92 |
Lebewesen & Lebensräume | 98 |
Luft | 86 |
Mensch & Umwelt | 115 |
Wasser | 75 |
Weitere | 115 |