The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \\\"mineralogical rock composition log\\\".
Projektziel ist die Aufklärung der Wechselwirkung von Bodenmikroorganismen mit schwermetalltoleranten und -akkumulierenden Pflanzen auf Serpentinboden. Serpentinböden stellen einen Extremstandort für die Besiedelung von Pflanzen dar, da sie einerseits hohe Schwermetallgehalte andererseits nur geringe Nährstoffgehalte aufweisen. Die an diesen Standort angepassten Pflanzen haben eine sehr hohe Toleranz gegenüber diesen Schwermetallen (Hypertoleranz), einige haben auch die Fähigkeit entwickelt, diese Schwermetalle auch in extrem hohen Mengen zu speichern (Hyperakkumulatoren). Über die Prozesse im Wurzelraum (Rhizosphäre) zur Metallverfügbarkeit weiß man noch sehr wenig. V.a. die Rolle von Wurzelausscheidungen bei der Metallmobilisierung bzw. -Immobilisierung ist noch weitgehend ungeklärt. Da in der Rhizosphäre auch immer erhöhte mikrobielle Aktivitäten induziert werden, ist zu erwarten, dass diese eine wesentliche Rolle bei der Verfügbarkeit der Metalle für die Pflanzen und damit bei der Anpassung an diesen Standort spielen. Über die Wechselwirkung zwischen Pflanzenwurzeln und Rhizosphärenmikroorganismen ist nur sehr wenig bekannt. In diesem Projekt sollen daher folgende Punkte anhand von Thlaspi goesingense (Akkumulator) und Silene vulgaris (Tolerant) näher untersucht werden: - Die Biogeochemie der Schwermetalle am Serpentinstandort unter Einfluss zweier verschiedener pflanzlicher Strategien (Toleranz und Akkumulation). - Wurzelausscheidungen und deren Einfluss auf die Schwermetallmobilität sowie deren mikrobielle Umsetzung. - Isolierung und Charakterisierung von Mikroorganismen im Wurzelraum von Metalltoleranten und -akkumulierenden Pflanzen sowie deren Wechselwirkung mit Wurzelausscheidungen. - Aufklärung der Rolle von Mykorrhizapilzen bei der Metalltoleranz. Diese Versuche sollen zu einem besseren Verständnis der Interaktion von Pflanzen mit Bodenmikroorganismen auf einem schwermetallbelasteten Standort beitragen. Diese Erkenntnisse könnten auch zu einer Verbesserung der Phytosanierungstechnologien beitragen.
Untersuchungen zur CO2-Speicherung in basischen und ultrabasischen Gesteinen werden sowohl in Reinversuchen als auch mittels Untersuchungen an Gesteinen durchgeführt. Dabei kommen sowohl Basalte als auch Serpentinite zum Einsatz. Folgende Mineralreaktionen stehen im Fokus: Serpentin - Hydromagnesit, Dypingit, Magnesit. Gewinnung von reaktivem SiO2-Gelen aus ultrabasischen Gesteinen Gewinnung von Magnesiumreichen Laugen aus Serpentinen
Die Bildung von molekularem Wasserstoff durch Hydrolyse an Fe(II)-Oxid Komponenten in ultramafischen Gesteinen führt zu sehr stark reduzierenden Bedingungen bei Wasser-Gesteins Reaktionen. Ausserdem werden bei Peridotit-Wasser Reaktionen Sekundärphasen gebildet, welche bei der abiotischen Bildung organischer Verbindungen als Oberflächenkatalysatoren wirken können. Mit diesem Antrag möchte ich um Mittel bitten, die es mir erlauben, über detailierte phasenpetrologische Untersuchungen und daran gekoppelte geochemische Modellrechungen die Bedingungen (Temperatur, pH, Wasserstoff- und Schwefelfugazitäten, Wasserfluss) der Peridotit-Wasser Reaktionen abzuschätzen. Damit soll eine Grundlage für bessere theoretische Vorhersagen zur abiotischen Organosynthese zu schaffen, die in einem verwandten Projekt verfolgt werden. An Proben vom Mittelatlantischen Rücken 15ºN (Logatchev Feld und ODP Leg 209 Bohrkernen) sollen mit elektronenmikroskopischen Verfahren Vergesellschaftungen von Fe-Ni Oxiden, Sulfiden und metallischen Phasen sowie von Serpentin-Bruzit charakterisiert werden. Darüber hinaus sollen bereits durchgeführte thermodynamische Berechungnen im System Fe-Ni-O-S durch solche in den Systemen MgO-FeO-Fe2O3-SiO2-H2-O2 sowie Cu-Fe-S-O-H-Na-Cl unser Verständnis von Serpentinisierungs-reaktionen und damit verbundene Massentransfers vertieft werden. Diese Studie soll bereits geförderte geologische und Fluid-geochemische Arbeiten ergänzen und versuchen, über theoretisch-geochemische Ansätze eine Brücke zwischen Petrologie und Biologie schlagen.
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \\\"mineralogical rock composition log\\\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
| Origin | Count |
|---|---|
| Bund | 3 |
| Wissenschaft | 16 |
| Type | Count |
|---|---|
| Förderprogramm | 3 |
| unbekannt | 16 |
| License | Count |
|---|---|
| offen | 3 |
| unbekannt | 16 |
| Language | Count |
|---|---|
| Deutsch | 3 |
| Englisch | 16 |
| Resource type | Count |
|---|---|
| Keine | 18 |
| Webseite | 1 |
| Topic | Count |
|---|---|
| Boden | 19 |
| Lebewesen und Lebensräume | 18 |
| Luft | 2 |
| Mensch und Umwelt | 19 |
| Wasser | 2 |
| Weitere | 19 |