API src

Found 19 results.

Mineralisierung zur CO2-Speicherung, basische Gesteine

Untersuchungen zur CO2-Speicherung in basischen und ultrabasischen Gesteinen werden sowohl in Reinversuchen als auch mittels Untersuchungen an Gesteinen durchgeführt. Dabei kommen sowohl Basalte als auch Serpentinite zum Einsatz. Folgende Mineralreaktionen stehen im Fokus: Serpentin - Hydromagnesit, Dypingit, Magnesit. Gewinnung von reaktivem SiO2-Gelen aus ultrabasischen Gesteinen Gewinnung von Magnesiumreichen Laugen aus Serpentinen

Rhizosphärenmikroben bei Metall-Hyperakkumulation

Projektziel ist die Aufklärung der Wechselwirkung von Bodenmikroorganismen mit schwermetalltoleranten und -akkumulierenden Pflanzen auf Serpentinboden. Serpentinböden stellen einen Extremstandort für die Besiedelung von Pflanzen dar, da sie einerseits hohe Schwermetallgehalte andererseits nur geringe Nährstoffgehalte aufweisen. Die an diesen Standort angepassten Pflanzen haben eine sehr hohe Toleranz gegenüber diesen Schwermetallen (Hypertoleranz), einige haben auch die Fähigkeit entwickelt, diese Schwermetalle auch in extrem hohen Mengen zu speichern (Hyperakkumulatoren). Über die Prozesse im Wurzelraum (Rhizosphäre) zur Metallverfügbarkeit weiß man noch sehr wenig. V.a. die Rolle von Wurzelausscheidungen bei der Metallmobilisierung bzw. -Immobilisierung ist noch weitgehend ungeklärt. Da in der Rhizosphäre auch immer erhöhte mikrobielle Aktivitäten induziert werden, ist zu erwarten, dass diese eine wesentliche Rolle bei der Verfügbarkeit der Metalle für die Pflanzen und damit bei der Anpassung an diesen Standort spielen. Über die Wechselwirkung zwischen Pflanzenwurzeln und Rhizosphärenmikroorganismen ist nur sehr wenig bekannt. In diesem Projekt sollen daher folgende Punkte anhand von Thlaspi goesingense (Akkumulator) und Silene vulgaris (Tolerant) näher untersucht werden: - Die Biogeochemie der Schwermetalle am Serpentinstandort unter Einfluss zweier verschiedener pflanzlicher Strategien (Toleranz und Akkumulation). - Wurzelausscheidungen und deren Einfluss auf die Schwermetallmobilität sowie deren mikrobielle Umsetzung. - Isolierung und Charakterisierung von Mikroorganismen im Wurzelraum von Metalltoleranten und -akkumulierenden Pflanzen sowie deren Wechselwirkung mit Wurzelausscheidungen. - Aufklärung der Rolle von Mykorrhizapilzen bei der Metalltoleranz. Diese Versuche sollen zu einem besseren Verständnis der Interaktion von Pflanzen mit Bodenmikroorganismen auf einem schwermetallbelasteten Standort beitragen. Diese Erkenntnisse könnten auch zu einer Verbesserung der Phytosanierungstechnologien beitragen.

XRD of Cores of the KTB Main Hole HB1

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Main Hole HB1d

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Main Hole HB1i

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cuttings of the KTB Main Hole HB1i

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Main Hole HB1a

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Main Hole HB1g

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cuttings of the KTB Main Hole HB1h

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cores of the KTB Pilot Hole VB1

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

1 2