Solar Radiation Modification (SRM) can neither conserve the current nor restore the pre-industrial climate. It would create an unpredictable new global climate with significant regional impacts. This brochure explains the risks of SRM for food security, justice and actual climate action. It explains the various SRM approaches and how they are supposed to work. It also describes the state of regulation and formulates conditions for responsible governance, including a non-use agreement. Veröffentlicht in Broschüren.
Wir schlagen vor, den von uns entwickelten Gaschromatographen GhOST-MS (Gas chromatograph for the Observation of tracers - coupled with a mass spectrometer) während der HALO Kampagne WISE einzusetzen um eine breite Palette von Tracern mit unterschiedlichen Lebenszeiten (von fast unendlich wie SF6 bis wenige Wochen, wie CHBr3) in der unteren und untersten Stratosphäre zu messen. Diese Messungen sollen gemeinsam mit den aus den Kampagnen TACTS, SALSA und POLSTRACC vorhandenen Beobachtungen ausgewertet werden. Bei der Auswertung wollen wir uns auf zwei Hauptaspekte konzentrieren. Dies sind die Ableitung von Transit-Zeit Verteilungen (Altersspektren) und die Bestimmung des Halogenbudgets der unteren Stratosphäre, insbesondre des Brombudgets. Die Auswertungen sollen für die verschiedenen Jahreszeiten der Kampagnen und auch im Hinblick auf unterschiedliche meteorologische Situation durchgeführt werden. Zur Ableitung der Altersspektren soll eine neue Methode entwickelt werden, die es erlaubt auch sogenannte bimodale Altersspektren abzuleiten, was eine bessere Beschreibung der Transportzeitverteilung der unteren und untersten Stratosphäre ermöglichen wird. Hierzu ist eine enge Zusammenarbeit mit dem Forschungszentrum Jülich und den Arbeiten zum CLaMS Modell geplant. Als Grundlage für die Methode zur Ableitung der Altersspektren soll der von Ehhalt et al. (2007) veröffentliche Ansatz verwendet werden. Beim Halogenbudget sollen unsere Messungen vor allem verwendet werden um abzuleiten, wieviel anorganisches Brom und Chlor aus kurzlebigen organischen Quellgasen in der unteren Stratosphäre vorhanden ist und dort zum Ozonabbau beitragen kann. Diese Daten sollen mit quasi-simultanen Messungen anorganischer Halogen-Komponenten der Universität Heidelberg kombiniert werden um insbesondre ein komplettes Brombudget der untersten Stratosphäre aufzustellen.
Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3) gehören zu den Stoffen mit dem höchsten Treibhauspotential (SF6-GWP= 23500, NF3-GWP= 16.100). Da SF6 im Focus der Politik ist (Verordnung (EU) 517/2014), wird häufig auf NF3 ausgewichen. In diesem zweiten Teil des Globalvorhabens soll eine Zuwendung auf Antrag vergeben werden. Es sind eine Trajektorie und eine Ausreißeranalyse aus SF6 und NF3-Messwerten dreier Luftmessstationen durchzuführen, mit dem Ziel Emissionsquellen in Europa zu ermitteln und die Erkenntnisse in die UNFCCC Berichterstattung einfließen zu lassen. Da dies bisher für diese Stoffe nicht durchgeführt wurde, sind Methoden und Analyseverfahren für die Auswertung zu erarbeiten. In einer Konferenz zu 'SF6 und NF3 als vergessene Treibhausgase' sollen die Ergebnisse beider Teilvorhaben mit Anwendern, Berichterstattern und Atmosphärenchemikern diskutiert und anschließend in einer peer reviewed Publikation in Zusammenarbeit mit den FG II 4.5 und V I.6 veröffentlicht werden.
Die Mischungsverhältnisse der wichtigsten langlebigen Treibhausgase in der Atmosphäre steigen durch die anhaltenden anthropogenen Emissionen weiter an. Die langlebigen Treibhausgase, die am meisten zum menschengemachten Klimawandel beitragen, sind Kohlendioxid (CO2), Methan (CH4) und Lachgas (N2O). Neben ihrem Beitrag zum Klimawandel weisen die Verteilungen dieser Gase starke Gradienten über die Tropopause auf und sind daher gute Indikatoren atmosphärischer Transportpozesse. mit einer Lebensdauer von ca. 850 Jahren und kontinuierlich steigenden Mischungsverhältnissen ist auch Schwefelhexafluorid (SF6), ein synthetisches Gas mit starkem Erwärmungspotential, wird häufig als Indikator des sogenannten Alters von Luftmassen verwendet, das ein Maß für die Stärke der stratosphärischen Transports ist.Das Vorhaben basiert auf der Harmonisierung und wissenschaftlichen Auswertung bereits existierender Messdaten dieser vier wichtigsten Treibhausgase und weiterer langlebiger halogenierte Spurenstoffe der Messplattform IAGOS_CARIBIC aus der Tropopausenregion. Der Datensatz deckt den Zeitraum 2005-2020 and und wird ergänzt durch Daten existierende Messungen im Rahmen verschiedener Messkamapgnen des deutschen Forschungsflugzeugs HALO.Die Datenauswertung wird sich konzentrieren auf: Trends der Mischungsverhältnisse langlebiger Treibhausgase in der oberen Troposphäre, insbesondere ihren Zeitversatz zu Messungen an Bodenmessstationen, die Variabilität langlebiger Treibhausgase in der Tropopausenregion und die Identifizierung und Quellenzuordnung auffällig hoher Spurengasmischungsverhältnisse in der oberen Tropopause. Das Ziel ist ein bessseres Verständnis atmosphärischer Transportprozesse, vor allem in die und in der Tropopausenregion.Außerdem soll im Rahmen des Vorhabens ein bestehender Messaufbau für Messungen halogenierte Spurengase an Luftproben mittels Gaschromatographie (GC) gekoppelt mit Massenspektrometrie um eine kleine GC-Einheit zur Messung von SF6 bei minimalen Probenverbrauch erweitert werden. Dafür beinhaltet das Vorhaben Untersuchungen zur Eignung nicht-radioaktiver Nachweismethoden für SF6. Detektoren, die auf geplusten Entladungen basieren, sind grundsätzlich für Messungen von SF6 geeignet, wurden aber noch nicht für Messungen in der Atmosphäre verwendet. Ein solcher Detektor soll für den Aufbau der neuen GC-Einheit getestet werden. Als Alternative ist ein Elektroneinfangdetektor, die etablierte Messtechnik basierend auf dem radioaktiven Zerfall eines Nickelisotops, vorgesehen.
Absenkung der CO2 Emissionen, Anpassung und 'Climate Engineering' (CE) werden allgemein als drei unabhängige Vorgehensweisen gegen die negativen Auswirkungen des Klimawandels angesehen. Im Rahmen dieses Projektes zeigen wir die Grenzen des 'Solar Radiation Management' (SRM) durch Sulfataerosol-Eintrag in die Stratosphäre (SAI) und marine Wolkenimpfung (MCB) als Maßnahmen zur Reduktion der globalen bzw. regionalen Temperatur auf. Zum ersten Mal werden dabei die Auswirkungen von gleichzeitig ausgeführtem SAI und MCB umfassend quantifiziert. Wir vermuten, dass die Begrenzung der Wirksamkeit von SAI und MCB bedeutende Auswirkungen auf die rechtliche und politische Betrachtung hat, die das Zusammenwirken und die zeitliche Reihenfolge von Emissionsminderungs-, Anpassungs-, und 'Climate Engineering'- Maßnahmen sowie die Politik der Klimagerechtigkeit bestimmen. Komplexe globale und regionale numerische Simulationsmodelle der Atmosphäre, die dem Stand des Wissens entsprechen, und die eine detaillierte Beschreibung der Atmosphärenphysik und Chemie beinhalten, stellen das wesentliche Werkzeug für die Quantifizierung der Effekte dieser Maßnahmen dar. Die Ergebnisse erlaube es die physikalischen Grenzen der angedachten Maßnahmen zu bestimmen. Die Ergebnisse des Vorhabens dienen als wichtige Grundlagen für andere Projekte im SPP, um eine integrale Bewertung von 'CO2 Mitigation, Adaption und Climate Engineering' zu ermöglichen.
Fluorierte Treibhausgase werden in der Regel gezielt hergestellt und als Arbeitsmittel in verschiedenen Anwendungen eingesetzt. Die Emissionen sind von 2003 bis 2016 kontinuierlich gestiegen, zeigen aber nun einen deutlichen Abwärtstrend. Grund dafür sind wirksame gesetzliche Regelungen, die die Verwendung der F-Gase limitieren. Der Artikel stellt die aktuellen Emissionen dieser Stoffgruppe vor. Entwicklung in Deutschland seit 1995 Zu den fluorierten Treibhausgasen (F-Gasen) zählen die vollfluorierten Kohlenwasserstoffe (FKW), die teilfluorierten Kohlenwasserstoffe (HFKW), Schwefelhexafluorid (SF 6 ) und Stickstofftrifluorid (NF 3 ). Hauptursache für die starke Zunahme war der vermehrte Einsatz von fluorierten Treibhausgasen als Kältemittel. Minderungen wurden hauptsächlich bei der Herstellung von Primäraluminium, Halbleitern, der auslaufenden Anwendung in Autoreifen, der Produktion von Schallschutzscheiben und bei Anlagen zur Elektrizitätsübertragung erreicht. Allerdings nehmen die Emissionen aus der Entsorgung von Schallschutzscheiben seit 2006 sichtbar zu, da die angenommene Lebenszeit dieser Scheiben erreicht worden ist (siehe Abb. „Emissionen fluorierter Treibhausgase“, Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“ und Abb. „Quellen der Emissionen fluorierter Treibhausgase“). In Zukunft ist damit zu rechnen, dass die F-Gas-Emissionen, insbesondere die HFKW-Emissionen, durch die Umsetzung der Verordnung (EU) Nr. 517/2014 weiter abnehmen. Wichtigstes Instrument der Verordnung ist die schrittweise Begrenzung der Verkaufsmengen von HFKW bis 2030 auf ein Fünftel der heutigen Verkaufsmengen, was sich zeitversetzt auf die Höhe der Emissionen auswirken wird. Die Schwefelhexafluorid-Emissionen aus der Entsorgung von Schallschutzscheiben stiegen bis 2019 und werden jetzt kontinuierlich sinken. Emissionen fluorierter Treibhausgase („F-Gase“) Quelle: Umweltbundesamt Diagramm als PDF Tab: Emissionen ausgewählter Treibhausgase nach Kategorien Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Quellen der Emissionen fluorierter Treibhausgase Quelle: Umweltbundesamt Diagramm als PDF Bedeutung von F-Gasen Fluorierte Treibhausgase (F-Gase) wirken sich je nach Substanz sehr stark auf das Klima aus, der Effekt ist bis zu 23.500-mal höher als bei Kohlendioxid. F-Gase sind daher Teil des Kyoto-Protokolls und der Nachfolgeregelungen. Herkunft von F-Gasen Während die klassischen Treibhausgase meist als unerwünschte Nebenprodukte freigesetzt werden, zum Beispiel bei der Verbrennung fossiler Rohstoffe, werden fluorierte Treibhausgase zum überwiegenden Teil gezielt produziert und eingesetzt. Sie werden heute in ähnlicher Weise verwendet wie früher FCKW , die die stratosphärische Ozonschicht zerstören. Fluorierte Treibhausgase werden hauptsächlich als Kältemittel in Kälte- und Klimaanlagen, Treibmittel in Schäumen und Dämmstoffen und als Feuerlöschmittel verwendet. Um die Emissionen dieser Stoffe zu vermindern, ist es neben technischen Maßnahmen vor allem zielführend, die Stoffe gezielt zu ersetzen oder alternative Technologien einzusetzen. Rechtsvorschriften Fluorierte Treibhausgase unterliegen wegen ihres hohen Treibhauspotenzials europäischer und nationaler Reglementierung. Auf europäischer Ebene ist das Inverkehrbringen und die Verwendung fluorierter Treibhausgase in der Verordnung (EU) 517/2014 und der Richtlinie 2006/40/EG geregelt. Die Verordnung gilt seit dem 01.01.2015 und ersetzt die bisherige Verordnung(EG) 842/2006. Ergänzend zu den EU-Regelungen gilt in Deutschland die Verordnung zum Schutz des Klimas vor Veränderungen durch den Eintrag bestimmter fluorierter Treibhausgase ( Chemikalien-Klimaschutzverordnung ).
Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3) gehören zu den Stoffen mit dem höchsten Treibhauspotential (SF6-GWP= 23500, NF3-GWP= 16.100). Da SF6 im Focus der Politik ist (Verordnung (EU) 517/2014), wird häufig auf NF3 ausgewichen. Das Vorhaben soll eine Strategie entwickeln für den deutschen, europäischen und globalen Ausstieg aus der Verwendung von SF6 und NF3 bzw. die Anwendungen eingrenzen für die es derzeit und evtl. bis 2050 keine Alternativen geben wird. Neben den, bis zum Beginn des Vorhabens, noch nicht geregelten Bereichen bei den elektrischen Betriebsmitteln sind der Einsatz von SF6 und NF3 in der Aluminium- und Magnesiumindustrie, der Halbleiterproduktion, der Solarzellenproduktion und in Teilchenbeschleunigern in Industrie und Medizin zu betrachten. Basierend auf den Ergebnissen früherer Forschungsvorhaben des UBA, intensiver Literaturrecherche sowie Interviews und Workshops mit Branchenexperten und Verbänden soll der aktuelle Stand des Einsatzes beider Stoffe in Deutschland, Europa und weltweit, Alternativen, Emissionsminderungsmaßnahmen, End-of-Life-Maßnahmen und Recyclingmöglichkeiten diskutiert werden. Darauf aufbauend sind Projektionen für Verwendung und Emissionen von SF6 und NF3 national und für Europa bis 2100 zu erarbeiten. In einer Konferenz zu 'SF6 und NF3 als vergessene Treibhausgase' sollen die Ergebnisse beider Teilvorhaben mit Anwendern, Berichterstattern und Atmosphärenchemikern diskutiert und anschließend in einer peer reviewed Publikation in Zusammenarbeit mit den FG II 4.5 und V I.6 veröffentlicht werden.
Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Origin | Count |
---|---|
Bund | 214 |
Europa | 1 |
Kommune | 7 |
Land | 915 |
Wissenschaft | 30 |
Zivilgesellschaft | 15 |
Type | Count |
---|---|
Chemische Verbindung | 19 |
Ereignis | 1 |
Förderprogramm | 138 |
Messwerte | 891 |
Strukturierter Datensatz | 20 |
Text | 42 |
unbekannt | 52 |
License | Count |
---|---|
geschlossen | 88 |
offen | 1063 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 1095 |
Englisch | 93 |
Resource type | Count |
---|---|
Archiv | 889 |
Datei | 24 |
Dokument | 34 |
Keine | 159 |
Webdienst | 8 |
Webseite | 971 |
Topic | Count |
---|---|
Boden | 1113 |
Lebewesen & Lebensräume | 1104 |
Luft | 1116 |
Mensch & Umwelt | 1157 |
Wasser | 1113 |
Weitere | 1128 |