Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Ableitung von Altersspektren und Halogenbudgets der UTLS aus GhOST-MS Messungen während TACTS, SALSA, POLSTRACC und WISE" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Wir schlagen vor, den von uns entwickelten Gaschromatographen GhOST-MS (Gas chromatograph for the Observation of tracers - coupled with a mass spectrometer) während der HALO Kampagne WISE einzusetzen um eine breite Palette von Tracern mit unterschiedlichen Lebenszeiten (von fast unendlich wie SF6 bis wenige Wochen, wie CHBr3) in der unteren und untersten Stratosphäre zu messen. Diese Messungen sollen gemeinsam mit den aus den Kampagnen TACTS, SALSA und POLSTRACC vorhandenen Beobachtungen ausgewertet werden. Bei der Auswertung wollen wir uns auf zwei Hauptaspekte konzentrieren. Dies sind die Ableitung von Transit-Zeit Verteilungen (Altersspektren) und die Bestimmung des Halogenbudgets der unteren Stratosphäre, insbesondre des Brombudgets. Die Auswertungen sollen für die verschiedenen Jahreszeiten der Kampagnen und auch im Hinblick auf unterschiedliche meteorologische Situation durchgeführt werden. Zur Ableitung der Altersspektren soll eine neue Methode entwickelt werden, die es erlaubt auch sogenannte bimodale Altersspektren abzuleiten, was eine bessere Beschreibung der Transportzeitverteilung der unteren und untersten Stratosphäre ermöglichen wird. Hierzu ist eine enge Zusammenarbeit mit dem Forschungszentrum Jülich und den Arbeiten zum CLaMS Modell geplant. Als Grundlage für die Methode zur Ableitung der Altersspektren soll der von Ehhalt et al. (2007) veröffentliche Ansatz verwendet werden. Beim Halogenbudget sollen unsere Messungen vor allem verwendet werden um abzuleiten, wieviel anorganisches Brom und Chlor aus kurzlebigen organischen Quellgasen in der unteren Stratosphäre vorhanden ist und dort zum Ozonabbau beitragen kann. Diese Daten sollen mit quasi-simultanen Messungen anorganischer Halogen-Komponenten der Universität Heidelberg kombiniert werden um insbesondre ein komplettes Brombudget der untersten Stratosphäre aufzustellen.
Das Projekt "Klimaneutralität bis 2050 - Teilvorhaben 2: Auswertung von Atmosphärendaten von Schwefelhexafluorid und Stickstofftrifluorid im europäischen Raum" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3) gehören zu den Stoffen mit dem höchsten Treibhauspotential (SF6-GWP= 23500, NF3-GWP= 16.100). Da SF6 im Focus der Politik ist (Verordnung (EU) 517/2014), wird häufig auf NF3 ausgewichen. In diesem zweiten Teil des Globalvorhabens soll eine Zuwendung auf Antrag vergeben werden. Es sind eine Trajektorie und eine Ausreißeranalyse aus SF6 und NF3-Messwerten dreier Luftmessstationen durchzuführen, mit dem Ziel Emissionsquellen in Europa zu ermitteln und die Erkenntnisse in die UNFCCC Berichterstattung einfließen zu lassen. Da dies bisher für diese Stoffe nicht durchgeführt wurde, sind Methoden und Analyseverfahren für die Auswertung zu erarbeiten. In einer Konferenz zu 'SF6 und NF3 als vergessene Treibhausgase' sollen die Ergebnisse beider Teilvorhaben mit Anwendern, Berichterstattern und Atmosphärenchemikern diskutiert und anschließend in einer peer reviewed Publikation in Zusammenarbeit mit den FG II 4.5 und V I.6 veröffentlicht werden.
Das Projekt "Klimaneutralität bis 2050 - Teilvorhaben 1: Erarbeitung einer Strategie für die Emissionsvermeidung von Schwefelhexafluorid und Stickstofftrifluorid auf nationaler, europäischer und globaler Ebene" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Öko-Recherche. Büro für Umweltforschung und -beratung GmbH.Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3) gehören zu den Stoffen mit dem höchsten Treibhauspotential (SF6-GWP= 23500, NF3-GWP= 16.100). Da SF6 im Focus der Politik ist (Verordnung (EU) 517/2014), wird häufig auf NF3 ausgewichen. Das Vorhaben soll eine Strategie entwickeln für den deutschen, europäischen und globalen Ausstieg aus der Verwendung von SF6 und NF3 bzw. die Anwendungen eingrenzen für die es derzeit und evtl. bis 2050 keine Alternativen geben wird. Neben den, bis zum Beginn des Vorhabens, noch nicht geregelten Bereichen bei den elektrischen Betriebsmitteln sind der Einsatz von SF6 und NF3 in der Aluminium- und Magnesiumindustrie, der Halbleiterproduktion, der Solarzellenproduktion und in Teilchenbeschleunigern in Industrie und Medizin zu betrachten. Basierend auf den Ergebnissen früherer Forschungsvorhaben des UBA, intensiver Literaturrecherche sowie Interviews und Workshops mit Branchenexperten und Verbänden soll der aktuelle Stand des Einsatzes beider Stoffe in Deutschland, Europa und weltweit, Alternativen, Emissionsminderungsmaßnahmen, End-of-Life-Maßnahmen und Recyclingmöglichkeiten diskutiert werden. Darauf aufbauend sind Projektionen für Verwendung und Emissionen von SF6 und NF3 national und für Europa bis 2100 zu erarbeiten. In einer Konferenz zu 'SF6 und NF3 als vergessene Treibhausgase' sollen die Ergebnisse beider Teilvorhaben mit Anwendern, Berichterstattern und Atmosphärenchemikern diskutiert und anschließend in einer peer reviewed Publikation in Zusammenarbeit mit den FG II 4.5 und V I.6 veröffentlicht werden.
Das Projekt "Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Elektrische Verluste" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Forschungsinstitut für Rationalisierung FIR e.V. an der RWTH Aachen.Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Das Projekt "Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Nachhaltigere Schaltanlagen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Asea Brown Boveri AG.Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Das Projekt "Nachhaltige Schaltanlagen für das Mittelspannungsnetz" wird/wurde ausgeführt durch: Asea Brown Boveri AG.Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Das Projekt "Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Optimierungmodell" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Wuppertal Institut für Klima, Umwelt, Energie gGmbH.Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Das Projekt "Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Nachhaltige Materialien und Prozesse" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Nachhaltige Technische Systeme (INATECH), Professur für Leistungsultraschall und Technische Funktionswerkstoffe.Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.
Das Projekt "Langlebige Treibhausgase in der extratropischen Tropopausenregion" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Mischungsverhältnisse der wichtigsten langlebigen Treibhausgase in der Atmosphäre steigen durch die anhaltenden anthropogenen Emissionen weiter an. Die langlebigen Treibhausgase, die am meisten zum menschengemachten Klimawandel beitragen, sind Kohlendioxid (CO2), Methan (CH4) und Lachgas (N2O). Neben ihrem Beitrag zum Klimawandel weisen die Verteilungen dieser Gase starke Gradienten über die Tropopause auf und sind daher gute Indikatoren atmosphärischer Transportpozesse. mit einer Lebensdauer von ca. 850 Jahren und kontinuierlich steigenden Mischungsverhältnissen ist auch Schwefelhexafluorid (SF6), ein synthetisches Gas mit starkem Erwärmungspotential, wird häufig als Indikator des sogenannten Alters von Luftmassen verwendet, das ein Maß für die Stärke der stratosphärischen Transports ist.Das Vorhaben basiert auf der Harmonisierung und wissenschaftlichen Auswertung bereits existierender Messdaten dieser vier wichtigsten Treibhausgase und weiterer langlebiger halogenierte Spurenstoffe der Messplattform IAGOS_CARIBIC aus der Tropopausenregion. Der Datensatz deckt den Zeitraum 2005-2020 and und wird ergänzt durch Daten existierende Messungen im Rahmen verschiedener Messkamapgnen des deutschen Forschungsflugzeugs HALO.Die Datenauswertung wird sich konzentrieren auf: Trends der Mischungsverhältnisse langlebiger Treibhausgase in der oberen Troposphäre, insbesondere ihren Zeitversatz zu Messungen an Bodenmessstationen, die Variabilität langlebiger Treibhausgase in der Tropopausenregion und die Identifizierung und Quellenzuordnung auffällig hoher Spurengasmischungsverhältnisse in der oberen Tropopause. Das Ziel ist ein bessseres Verständnis atmosphärischer Transportprozesse, vor allem in die und in der Tropopausenregion.Außerdem soll im Rahmen des Vorhabens ein bestehender Messaufbau für Messungen halogenierte Spurengase an Luftproben mittels Gaschromatographie (GC) gekoppelt mit Massenspektrometrie um eine kleine GC-Einheit zur Messung von SF6 bei minimalen Probenverbrauch erweitert werden. Dafür beinhaltet das Vorhaben Untersuchungen zur Eignung nicht-radioaktiver Nachweismethoden für SF6. Detektoren, die auf geplusten Entladungen basieren, sind grundsätzlich für Messungen von SF6 geeignet, wurden aber noch nicht für Messungen in der Atmosphäre verwendet. Ein solcher Detektor soll für den Aufbau der neuen GC-Einheit getestet werden. Als Alternative ist ein Elektroneinfangdetektor, die etablierte Messtechnik basierend auf dem radioaktiven Zerfall eines Nickelisotops, vorgesehen.
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Climate Engineering durch Modifikation der Arktischen Zirren im Winter: Risiken und Durchführbarkeit (AWiCiT)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Das sogenannte 'Climate Engineering' beschreibt ein gezieltes Eingreifen ins Klimasystem mit dem Ziel, der globalen Erwärmung entgegen zu wirken. Zusätzlich zu dem Entfernen von Kohlendioxid und der Beeinflussung von Solarstrahlung (solar radiation management), wurde eine Methode vorgeschlagen, die zu mehr Emission von langwelliger Strahlung in den Weltall führen soll. Hierbei soll der wärmende Effekt der Zirruswolken reduziert werden. Wir wollen diese Methode in unserem Forschungsantrag genauer untersuchen. Wir planen uns auf die mittleren und hohen Breiten der Nordhemisphäre im Winter zu konzentrieren, um die Strahlungseffekte von Zirren auf die Solarstrahlung zu minimieren. Insbesondere möchten wir folgender Frage nachgehen: Ist das Ausdünnen von arktischen Zirren im Winter (AWiCiT) durchführbar und was ist die maximale Abkühlung, die hiermit erreicht werden kann? Die hiermit verbundenen Risiken und Nebenwirkungen des AWiCiT wollen wir auf der regionalen Skala hinsichtlich möglicher Änderungen der arktischen Stratosphäre insbesondere Auswirkungen auf die Ozonschicht sowie mögliche Veränderungen in tiefer liegenden Wolken mit dem gekoppelten Wettervorhersage/Chemiemodell ICON-ART studieren. Mögliche Auswirkungen auf die globale Zirkulation, Meeresströmungen sowie die Meereisbedeckung werden mit Hilfe des globalen gekoppelten Aerosol-Atmosphären-Ozean Klimamodells MPI-ESM-HAM untersucht. Um die oben genannten Fragen zu beantworten, müssen wir die gegenwärtigen globalen Zirkulationsmodelle validieren insbesondere hinsichtlich ihrer Fähigkeit die beobachtete Ausbreitung und Höhe der Zirruswolken im arktischen Winter zu reproduzieren. Des Weiteren werden wir die Transportwege der natürlichen Eiskeime und der Impf-Eiskeime unten den dynamischen Bedingungen im arktischen Winter analysieren um die Lebensdauer der Impf-Eiskeime in der Impfregion abzuschätzen. Sind die Höhen und Flugrouten der kommerziellen Langstreckenflüge geeignet um einen Großteil des Arktischen Zirrus zu impfen oder sollte die Impfgegend in mittlere Breiten ausgedehnt werden? Ist Bismut(III)-iodid (BiI3), das als Impf-Eiskeim hierfür vorgeschlagen wird, unter diesen Umständen der am besten geeignete Impfstoff? Das Ausdünnen der Zirren ist nur dann effektiv, wenn der natürlich Zirrus hauptsächlich durch homogenes Gefrieren von Lösungströpfchen entsteht. Wenn er primär durch heterogene Nukleation gebildet werden würde, würde Impfen zu einer Erwärmung statt Abkühlung führen können. Deshalb müssen die Eigenschaften der Zirren noch besser verstanden werden, insbesondere der Anteil der Zirren, der im heutigen Klima durch heterogene Nukleation gebildet wird.
Origin | Count |
---|---|
Bund | 214 |
Europa | 1 |
Land | 939 |
Wissenschaft | 20 |
Type | Count |
---|---|
Chemische Verbindung | 19 |
Ereignis | 1 |
Förderprogramm | 141 |
Messwerte | 923 |
Text | 43 |
unbekannt | 49 |
License | Count |
---|---|
geschlossen | 84 |
offen | 1083 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 1120 |
Englisch | 78 |
Resource type | Count |
---|---|
Archiv | 922 |
Datei | 5 |
Dokument | 32 |
Keine | 160 |
Webseite | 991 |
Topic | Count |
---|---|
Boden | 1132 |
Lebewesen & Lebensräume | 1125 |
Luft | 1133 |
Mensch & Umwelt | 1171 |
Wasser | 1127 |
Weitere | 1145 |