API src

Found 128 results.

Ide3AL: 'Innovationen für dynamische, energie-effiziente elektrische Antriebe mit neuartiger Leistungselektronik in der Industrie & Fertigung', Teilvorhaben: Innovative, verlustarme Sinusfilter

Ziel des Forschungsprojektes Ide3AL ist es, die Verluste im Antriebssystem gegenüber marktetablierten, geregelten Antriebssystemen um durchschnittlich 15% zu senken. Der Einsatz schnellschaltender, verlustarmer SiC-Leistungshalbleiter in Verbindung mit integrierter Filtertechnologie soll zu einer deutlichen Reduktion von Eigen- und Zusatzverlusten führen, die konventionelle Umrichter nach dem Stand der Technik verursachen. Im Teilvorhaben werden folgende Punkte bearbeitet: 1. Auslegung und Realisierung des Sinusfilters; 2. Kern- und Materialauswahl für Wickelgüter; 3. Fertigung der Wickelgüter.

SiC-basierte modulare Leistungselektronik für ausfallsichere Antriebstechnik - SiCmodul, Teilvorhaben: Hochzuverlässige SiC basierte motorintegrierte Leistungselektronik

Die Robert Bosch GmbH wird im Rahmen des Projekts SiCmodul die Entwicklung hochtemperaturstabiler (bis 200°C) und hocheffizienter SiC Leistungsmodule unterstützen und den Fügeprozess für SiC Chips weiterentwickeln. Diese neue Modulaufbautechnologie für SiC wird mittels geeigneter Testvehikel hinsichtlich elektrischer Performance und Robustheit qualifiziert. Als finaler Demonstrator wird eine 800V Asynchronmaschine für die Elektronikintegration in das Maschinengehäuse modifiziert und auf dem Motorprüfstand getestet. Die entwickelte SiC Leistungsmodultechnologie wird parallel auf Modulebene elektrisch charakterisiert.

TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenabscheidung

Ziel des Teilprojekts ist die Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer (Cat-) und plasmaunterstützter (PE-) chemische Gasphasenabscheidung (CVD). Dabei stehen die Entwicklung von industriell geeigneten Prozessen zur kostengünstigen Abscheidung sowie die Demonstration von passivierten Kontaktsolarzellen mit hohen Wirkungsgraden im Fokus. Die vorhandenen und gewonnenen Erkenntnisse bezüglich der Herstellung von und des Verständnisses für Siliziumoxid und amorphem Silizium (a-Si:H), die für die Erzeugung passivierter Kontakte in Siliziumsolarzellen optimiert sind, sollen in die Prozess- und Anlagenentwicklung im Verbund einfließen. Des Weiteren wird eine beidseitig kontaktierte Demonstratorsolarzelle mit einer transparenten Vorderseite basierend auf einem Tunneloxid/Siliziumkarbid Schichtstapel gefertigt.

HELENE: Hocheffiziente, langlebige und kompakte Leistungselektronik auf Galliumnitridbasis für die Elektromobilität der Zukunft, Teilvorhaben: Basis für die Elektromobilität der Zukunft

Das Forschungsprojekt HELENE wird die Machbarkeit von GaN-auf-Si als robuste Hochspannungs-Technologie entlang der Wertschöpfungskette bis zu Demonstratoren mit hoher industrieller, gesellschaftlicher und ökologischer Relevanz überprüfen. Diese Technologie bietet einige Vorteile gegenüber dem zurzeit verwendeten SiC-Halbleiter: gesteigerte Effizienz, höhere Schaltfrequenzen, minimierter Flächenverbrauch und ein geringeres Gewicht. Auch die Kosten der GaN-Technologie sind gering genug um eine Konkurrenz darzustellen. HELENE zielt auf die Erforschung der Grundlagen hochdynamischer, kompakter Bordnetzwandler zur Reduzierung bis hin zum Entfall der 48 V-Batterie und Ladegeräten mit 60 % höherer Leistungsdichte und 40 % geringeren Verlusten gegenüber dem Stand der Technik, bei Erfüllung international geltender Zuverlässigkeitsanforderungen.

MAX-Phasenkomposite: Eine neue Werkstoffklasse für hochtemperaturbelastete Bauteile

SiC-BiNet -Bidirektionaler Mittelspannungsumrichter mit Hochvolt SiC-Bauelementen zur gesteigerten Integration erneuerbarer Energien und innerstädtischer Speicher in innovative Netzstrukturen, Teilvorhaben: Kernmaterialien und Isolationssysteme eines AC/DC Umrichters mit Hochvolt SiC-Bauelement

Ziel des Projektes ist die Erarbeitung der Grundlagen für eine einphasige bidirektionale AC/DC-Umrichtertechnologie mit Hochvolt-SiC-Bauelementen für die Anbindung an das Mittelspannungsnetz sowie deren Umsetzung in einem Demonstrator. Die galvanische Trennung erfolgt hierbei über einen HF-Transformator, der mit neuen Kernaufbauten und angepassten Isolierstoffen den hohen Spannungssteilheiten der Hochvolt-SiC-Bauelemente standhält. Unser Teilvorhaben widmet sich dabei der Erarbeitung von modellbasierten Alterungs- und Ausfallszenarien für induktive Bauelemente in einer SiC-BiNet Installation. Auf dieser Basis sollen dann optimal geeignete Materialpaarungen und Konstruktionen für induktive Bauelemente untersucht und deren analytische Qualifizierung vorgenommen werden. Übergeordnetes Ziel ist die Bereitstellung optimal geeigneter Demonstratoren für die Induktivitäten an die Partner zum dortigen Aufbau eines Gesamt-Demonstrators. Der erste Projektabschnitt wird dominiert von Topologiestudien und Simulationen, wobei die Ergebnisse einerseits als datentechnische Basis für unsere eigene weitere Arbeit dienen und andererseits auch den Partnern als Input für deren Teilprojekte zugearbeitet werden. Im Weiteren werden optimale Wickelarten unter Berücksichtigung von Stromform, Frequenz und Kühlmedium untersucht und es wird durch Iterationen von Simulation, Musterbau und Versuch eine elektromagnetische Optimierung zur Gewährleistung der Funktion mit minimalen Verlusten und geringstmöglichem Materialeinsatz erarbeitet. Der anspruchsvollste Teil der Aufgabe ist die Entwicklung des Isolationssystems, wobei der technologische Spagat aus optimaler Isoliereigenschaft und möglichst minimalem Bauraum aufzulösen ist. Neben materialtechnischen und geometrischen Aspekten werden vor allem auch umgebungstechnische Szenarien eruiert. Die wissenschaftlichen Arbeiten werden kontinuierlich flankiert durch Iterationen von Aufbau, Test und Optimierung von Mustern und Demonstratoren.

SiC-basierte modulare Leistungselektronik für ausfallsichere Antriebstechnik - SiCmodul, Teilvorhaben: Neuartige niederinduktive 1200 V SiC-Powermodule mit Hochtemperatur-Treibern in Leiterplatten-Embeddingtechnik

Forschungsziele von SiCmodul sind Einsatz und Befähigung neuartiger Aufbau- und Verbindungstechnologien (AVT) zur Realisierung eines hochintegrierten, universellen Halbbrücken-Bausteins für leistungselektronische Anwendungen mit schnellschaltenden SiC-Halbleitern. Die Integration von Leistungsschaltern, Snubber-Kondensator und Treiberschaltung in einem Embedded-SiC-Modul ermöglicht einerseits durch Modularisierbarkeit den Einsatz in verschiedenen Applikationen und Leistungsklassen, andererseits die Nutzung der Vorteile von SiC-Halbleitern. Hierzu zählen der Einsatz in Hochtemperatur-Applikationen bei Temperaturen Tj bis 200 Grad Celsius, sowie die Maximierung der Leistungsdichte mittels schneller Schaltvorgänge durch eine Kommutierungsinduktivität kleiner als 4 nH. Der Hauptfokus von Schweizer liegt auf dem Kernstück des Projekts SiCmodul, welches das 1200 V SiC Embedding Leistungsmodul mit Halbbrücken-Funktionalität darstellt. Zu dessen Realisierung werden auf Leadframes gefügte Siliziumcarbid-Halbleiter in hochtemperatur-geeignete, organische Substrate durch Leiterplattenprozesse integriert/embedded und die Leadframes beidseitig galvanische in Mikro Via-Technologie kontaktiert. Zusätzlich sollen ebenfalls passive Bauelemente, Sicherheitssensorik und Gatetreiber in den Modulen integriert werden.

SiC-basierte modulare Leistungselektronik für ausfallsichere Antriebstechnik - SiCmodul, Teilvorhaben: Modulare Hochtemperatur SiC Power Elektronik für ausfallsichere Leistungssteuerung der Antriebstechnik

Das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM arbeitet an vier Arbeitspaketen im Vorhaben. Der Schwerpunkt der Aktivitäten liegt in der Entwicklung eines niederinduktiven Aufbaus für Schaltzellen mittels Embedding zur effizienten Nutzung schnellschaltender SiC-Leistungshalbleiter, der Erforschung eines Verfahrens zur Erzeugung dicker Cu-Metallisierungen auf den Kontaktflächen vereinzelter Leistungshalbleiter, der Optimierung der Embedding-Technologie mittels Niedertemperatur- / Niederdruck-Ag-Sintern und galvanischer Oberseitenkontaktierung, der Entwicklung eines fertigungstauglichen Verfahrens im Vergleich zum Embedding mittels doppelseitiger Cu-Kontaktierung sowie einer Untersuchung des thermischen Verhaltens im Vergleich zu anderen Embedding-Verfahren und der Untersuchung sowie Optimierung einer modularen Verbindungstechnik zwischen den Komponenten von Leistungsmodulen mittels einer kombinierten Sinter- / Laminier-Technologie. Mit den Kenntnissen zu Methoden und Technologien in der Aufbau- und Verbindungstechnik von mikroelektronischen und mikrosystematischen Bauteilen unterstützt IZM die Verbundpartner bei ihren Arbeiten.

SiC-MSBat: Mittelspannungsumrichter mit Hochvolt-SiC-Leistungsmodulen für Großspeicher und systemdienliche Verteilnetze, Teilvorhaben: Fraunhofer ISE

Entwicklung eines leistungselektronischen Umrichters mit 250 kW mit SiC-Halbleitern zur Anbindung einer Hochleistungs-/energiebatterie an das Verteilnetz. Für die Entwicklung werden Vorserienmuster von 3,3-kV-SiC-MOSFETs genutzt. Mit diesen Bauelementen sollen SiC-Leistungsmodule zu 150 - 300 A entwickelt werden. Erst die Entwicklung von niederinduktiven HV-SiC-Halbleitermodulen schafft die Grundlage für die Entwicklung von Mittelspannungsumrichtern hoher Leistung. In einem 3,3-kV-Netz ergeben sich hierbei Umrichterleistungen von 250 - 1.000 kVA. Über die Mittelspannungsebene wird der Hochleistungsspeicher eingebunden, der dann in das 110-kV-Netz gekoppelt wird. Hochleistungsspeicher ermöglichen den kurzzeitigen Inselbetrieb von Industrieanlagen und sichern somit kostenkritische Produktionsprozesse bei Netzausfällen. Weiter ermöglichen mehrere Hochleistungsspeicher im Verbund des 110-kV-Netzes den Wiederaufbau des Netzes und das Anfahren von Kraftwerken. Damit können Hochleistungsspeicher neben den klassischen Pumpspeicherseen eine weitere strategisch wichtige Säule zur Schwarzstartfähigkeit der Energieversorgung bilden. Durch die Verbundpartner dieses Vorhabens ist die gesamte wirtschaftliche Wertschöpfungskette vom Komponentenhersteller, Leistungselektronikhersteller, Systemintegrator und Netzbetreiber dargestellt. Die Forschungsaspekte zu Bauelementen, Leistungselektronik, System- und Regelungstechnik werden durch das Fraunhofer ISE flankiert. Semikron wird die Entwicklung der niederinduktiven HV-SiC-Halbleitermodule durchführen. Die Entwicklung der induktiven Leistungsbauelemente und die Durchführung damit verbundener Studien werden von STS übernommen.

SiC-MSBat: Mittelspannungsumrichter mit Hochvolt-SiC-Leistungsmodulen für Großspeicher und systemdienliche Verteilnetze, Teilvorhaben: Optimierte Aufbau- und Verbindungstechnik für SiC-Leistungshalbleiter zur Anwendung in Mittelspannungsumrichtern

Hochleistungsspeicher ermöglichen den kurzzeitigen Inselbetrieb von Industrieanlagen und sichern somit kostenkritische Produktionsprozesse bei Netzausfällen. Ziel des Vorhabens ist die Entwicklung eines leistungselektronischen Umrichters mit 250 kW mit SiC-Halbleitern zur Anbindung einer Hochleistungsenergiebatterie an das Verteilnetz. Innerhalb des Vorhabens 'SiC-MSBat' werden neue leistungselektronische Konzepte basierend auf innovativen Halbleitertechnologien entwickelt, die die Systemkosten senken und damit eine schnellere, unkomplizierte und effiziente Integration von Speichern in Mittelspannungsnetze ermöglichen. Für die Entwicklung werden Vorserienmuster von 3,3 kV SiC MOSFETs und Dioden verwendet. Das Ziel im Teilvorhaben ist damit zuverlässige Leistungselektronikmodule zu konzipieren, die durch ihre Eigenschaften ein gutes Skalierungspotentialbieten. Dabei liegt ein besonderer Fokus auf hohen Schaltfrequenzen die besondere Herausforderungen mit sich bringen. So muss das Layout der Modulschaltung zu niedrigen Induktivitäten hin optimiert werden, um Schaltverluste zu reduzieren und hohe Überspannungen zu vermeiden.

1 2 3 4 511 12 13