Entwicklung eines leistungselektronischen Umrichters mit 250 kW mit SiC-Halbleitern zur Anbindung einer Hochleistungs-/energiebatterie an das Verteilnetz. Für die Entwicklung werden Vorserienmuster von 3,3-kV-SiC-MOSFETs genutzt. Mit diesen Bauelementen sollen SiC-Leistungsmodule zu 150 - 300 A entwickelt werden. Erst die Entwicklung von niederinduktiven HV-SiC-Halbleitermodulen schafft die Grundlage für die Entwicklung von Mittelspannungsumrichtern hoher Leistung. In einem 3,3-kV-Netz ergeben sich hierbei Umrichterleistungen von 250 - 1.000 kVA. Über die Mittelspannungsebene wird der Hochleistungsspeicher eingebunden, der dann in das 110-kV-Netz gekoppelt wird. Hochleistungsspeicher ermöglichen den kurzzeitigen Inselbetrieb von Industrieanlagen und sichern somit kostenkritische Produktionsprozesse bei Netzausfällen. Weiter ermöglichen mehrere Hochleistungsspeicher im Verbund des 110-kV-Netzes den Wiederaufbau des Netzes und das Anfahren von Kraftwerken. Damit können Hochleistungsspeicher neben den klassischen Pumpspeicherseen eine weitere strategisch wichtige Säule zur Schwarzstartfähigkeit der Energieversorgung bilden. Durch die Verbundpartner dieses Vorhabens ist die gesamte wirtschaftliche Wertschöpfungskette vom Komponentenhersteller, Leistungselektronikhersteller, Systemintegrator und Netzbetreiber dargestellt. Die Forschungsaspekte zu Bauelementen, Leistungselektronik, System- und Regelungstechnik werden durch das Fraunhofer ISE flankiert. Semikron wird die Entwicklung der niederinduktiven HV-SiC-Halbleitermodule durchführen. Die Entwicklung der induktiven Leistungsbauelemente und die Durchführung damit verbundener Studien werden von STS übernommen.
Hochleistungsspeicher ermöglichen den kurzzeitigen Inselbetrieb von Industrieanlagen und sichern somit kostenkritische Produktionsprozesse bei Netzausfällen. Ziel des Vorhabens ist die Entwicklung eines leistungselektronischen Umrichters mit 250 kW mit SiC-Halbleitern zur Anbindung einer Hochleistungsenergiebatterie an das Verteilnetz. Innerhalb des Vorhabens 'SiC-MSBat' werden neue leistungselektronische Konzepte basierend auf innovativen Halbleitertechnologien entwickelt, die die Systemkosten senken und damit eine schnellere, unkomplizierte und effiziente Integration von Speichern in Mittelspannungsnetze ermöglichen. Für die Entwicklung werden Vorserienmuster von 3,3 kV SiC MOSFETs und Dioden verwendet. Das Ziel im Teilvorhaben ist damit zuverlässige Leistungselektronikmodule zu konzipieren, die durch ihre Eigenschaften ein gutes Skalierungspotentialbieten. Dabei liegt ein besonderer Fokus auf hohen Schaltfrequenzen die besondere Herausforderungen mit sich bringen. So muss das Layout der Modulschaltung zu niedrigen Induktivitäten hin optimiert werden, um Schaltverluste zu reduzieren und hohe Überspannungen zu vermeiden.
Das konkrete Ziel des Vorhabens ist die Entwicklung voll funktionsfähiger, praxistauglicher, optimierter Systemlösungen für vollständige PV-Großkraftwerke, die alle vom jeweiligen Netz gestellten Anforderungen zuverlässig und vor allem auch kostengünstig erfüllen. Dies beinhaltet insbesondere angepasste Komponenten (insb. Wechselrichter), den Einsatz zusätzlicher Systembausteine (wie z.B. Energiespeichereinheiten), neuartige Steuerungs- und Regelungssysteme und Auslegungsverfahren sowie den wissenschaftlichen Nachweis der Funktionalität, Zuverlässigkeit und Wirtschaftlichkeit im Betrieb ebenso wie neuartige Halbleiter-Bauelemente auf der Basis von Siliziumkarbid (SiC) für eine neue Generation PV bezogener Leistungselektroniklösungen.
Der Hauptfokus für die TU Chemnitz liegt auf der Untersuchung der Zuverlässigkeit der SiC-Bauelemente. Im Zuge dieser Arbeit sollen geeignete Verfahren zur Temperaturermittlung gefunden werden, damit anschließend Zuverlässigkeitsuntersuchungen der Aufbau- und Verbindungstechnik durchgeführt werden können. Weiter sollen die SiC-Bauelemente ebenfalls auf Zuverlässigkeit untersucht werden. Hierbei werden die Randstruktur, die Qualität des Gateoxids und eventuelle Schwachstellen der Passivierungsschicht untersucht. Die Herausforderung hierbei wird sein, geeignete Testaufbauten zu entwickeln, die zunächst einmal die Messungen bei den geforderten hohen Spannungen der SiC-Bauelemente ermöglichen sowie die Zuverlässigkeit der Bauelemente nachweisen. Dies ist dahingehend wichtig, da der Einsatz für SiC-Bauelemente in Spannungsbereichen möglich ist, in denen Silizium nicht mehr verwendbar ist.
Ziel des Verbundprojektes ist die Entwicklung eines chemisch-biotechnischen Verfahrens zur Herstellung von Phenol aus Biogas. In einem ersten Schritt sollen aus Biogas chemokatalytisch Benzol und die Nebenprodukte Ethen und Naphthalin hergestellt werden. In einem zweiten biotechnologischen Schritt sollen Benzol in Phenol sowie die Nebenprodukte in die Wertstoffe Ethylenoxid und Naphthol umgesetzt werden. Die Ziele des Teilprojekts sind: i) Aufbau einer Testanlage, ii) Einsatzfähige Single-Site Katalysatoren sowie iii) Produktion von Phenol, Naphthol und Ethylenoxid aus Biogas durch Kopplung von Chemo- und Biokatalyse. Für letzteres Ziel optimiert LIKAT drei Klassen von Katalysatoren auf maximale Selektivität für Benzol bei höchstmöglichem Umsatz von Biogas bzw. Methan. MLU stellt eine lösliche Methanmonooxygenase zur Verfügung und screent nach weiteren Benzol und Naphthalin oxidierenden Enzymen, welche rekombinant gewonnen werden sollen. IGB ist zuständig für das Screening nach weiteren Ethen oxidierenden Enzymen, die Untersuchung und Optimierung der Ganzzellkatalyse durch methanotrophe Mikroorganismen, sowie Aufbau und Betrieb einer Versuchsanlage zur Herstellung aller Endprodukte. Danach sollen die in den Teilprojekten erreichten Ergebnisse in der Versuchsanlage durch Kopplung der Chemo- und Biokatalyse vereinigt werden. Die Arbeitsplanung von LIKAT umfasst im Einzelnen folgende Arbeitspakete: 1) Aufbau des Teststandes für die Methanaromatisierung; 2) Synthese geeigneter Single-Site-Katalysatoren, wie Fe, Mo und vergleichbare, auf Trägermaterialien, wie SiO2, SiC, Kohlenstoffallotrope, Zeolithe; 3) Katalysatorcharakterisierung (XRD, BET, TG/DSC, XPS, UV-vis, IR/Raman, Chemisorption, TEM, XANES/EXAFS); 4) Katalysatortests im breiten Parameterraum 5) Optimierung von Katalysatorsynthese und Austestung sowie 6) Chemo- und Biokatalytische Kopplung.
Der öffentliche Nahverkehr ist eine bedeutende Komponente der Mobilität der Bevölkerung. Die Antriebstechnik von Straßenbahnen nutzt Leistungselektronik für die Steuerung der Fahrmotoren. Dabei bestehen hohe Anforderungen an die Kompaktheit. Die Verwendung von wide band gap (WBG) Leistungs-halbleiter, speziell SiC, bietet durch geringe Durchlass- und Schaltverluste und eine potenziell höhere Arbeits-temperatur die größten Perspektiven bezüglich einer Volumens- und Massereduktion. Perspektivisch können für die Traktionsumrichter neue Einbauräume z.B. in der Nähe der Motoren erschlossen werden. Darüber hinaus kann durch die hohen Taktfrequenzen der SiC-Bauelemente der Wirkungsgrad im Antriebsstrang deutlich verbessert werden. Hinzu kommen Reduktionen der durch Pendelmomente und Magnetostriktion angeregten Motorgeräusche, ein Vorteil besonders für den urbanen Verkehr. Dabei ist eine robuste Aufbautechnik der Leistungs-halbleiter aufgrund der hohen Anforderungen bezüglich Lebensdauer, Temperatur- und Lastzyklenfestigkeit sowie klimatischer Bedingungen. Erforderlich und Netzspannungen bis zu 1200 V und Leistungen bis etwa 200 kW beherrscht werden, was eine hochstromgeeignete Aufbautechnik erfordert. (
Die Robert Bosch GmbH wird im Rahmen des Projekts SiCmodul die Entwicklung hochtemperaturstabiler (bis 200°C) und hocheffizienter SiC Leistungsmodule unterstützen und den Fügeprozess für SiC Chips weiterentwickeln. Diese neue Modulaufbautechnologie für SiC wird mittels geeigneter Testvehikel hinsichtlich elektrischer Performance und Robustheit qualifiziert. Als finaler Demonstrator wird eine 800V Asynchronmaschine für die Elektronikintegration in das Maschinengehäuse modifiziert und auf dem Motorprüfstand getestet. Die entwickelte SiC Leistungsmodultechnologie wird parallel auf Modulebene elektrisch charakterisiert.
Forschungsziele von SiCmodul sind Einsatz und Befähigung neuartiger Aufbau- und Verbindungstechnologien (AVT) zur Realisierung eines hochintegrierten, universellen Halbbrücken-Bausteins für leistungselektronische Anwendungen mit schnellschaltenden SiC-Halbleitern. Die Integration von Leistungsschaltern, Snubber-Kondensator und Treiberschaltung in einem Embedded-SiC-Modul ermöglicht einerseits durch Modularisierbarkeit den Einsatz in verschiedenen Applikationen und Leistungsklassen, andererseits die Nutzung der Vorteile von SiC-Halbleitern. Hierzu zählen der Einsatz in Hochtemperatur-Applikationen bei Temperaturen Tj bis 200 Grad Celsius, sowie die Maximierung der Leistungsdichte mittels schneller Schaltvorgänge durch eine Kommutierungsinduktivität kleiner als 4 nH. Der Hauptfokus von Schweizer liegt auf dem Kernstück des Projekts SiCmodul, welches das 1200 V SiC Embedding Leistungsmodul mit Halbbrücken-Funktionalität darstellt. Zu dessen Realisierung werden auf Leadframes gefügte Siliziumcarbid-Halbleiter in hochtemperatur-geeignete, organische Substrate durch Leiterplattenprozesse integriert/embedded und die Leadframes beidseitig galvanische in Mikro Via-Technologie kontaktiert. Zusätzlich sollen ebenfalls passive Bauelemente, Sicherheitssensorik und Gatetreiber in den Modulen integriert werden.
Das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM arbeitet an vier Arbeitspaketen im Vorhaben. Der Schwerpunkt der Aktivitäten liegt in der Entwicklung eines niederinduktiven Aufbaus für Schaltzellen mittels Embedding zur effizienten Nutzung schnellschaltender SiC-Leistungshalbleiter, der Erforschung eines Verfahrens zur Erzeugung dicker Cu-Metallisierungen auf den Kontaktflächen vereinzelter Leistungshalbleiter, der Optimierung der Embedding-Technologie mittels Niedertemperatur- / Niederdruck-Ag-Sintern und galvanischer Oberseitenkontaktierung, der Entwicklung eines fertigungstauglichen Verfahrens im Vergleich zum Embedding mittels doppelseitiger Cu-Kontaktierung sowie einer Untersuchung des thermischen Verhaltens im Vergleich zu anderen Embedding-Verfahren und der Untersuchung sowie Optimierung einer modularen Verbindungstechnik zwischen den Komponenten von Leistungsmodulen mittels einer kombinierten Sinter- / Laminier-Technologie. Mit den Kenntnissen zu Methoden und Technologien in der Aufbau- und Verbindungstechnik von mikroelektronischen und mikrosystematischen Bauteilen unterstützt IZM die Verbundpartner bei ihren Arbeiten.
Origin | Count |
---|---|
Bund | 110 |
Type | Count |
---|---|
Förderprogramm | 110 |
License | Count |
---|---|
offen | 110 |
Language | Count |
---|---|
Deutsch | 109 |
Englisch | 5 |
Resource type | Count |
---|---|
Keine | 21 |
Webseite | 89 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 39 |
Luft | 55 |
Mensch & Umwelt | 110 |
Wasser | 24 |
Weitere | 110 |