API src

Found 33 results.

Related terms

Referenzkraftwerk Lausitz

Das Projekt "Referenzkraftwerk Lausitz" wird/wurde ausgeführt durch: Referenzkraftwerk Lausitz GmbH.Das Reallabor Referenzkraftwerk Lausitz (RefLau) beinhaltet die Planung, Errichtung und den Betrieb eines Wasserstoff-Kraftwerks als technologische Innovation sowie die Vermarktung des grünen Wasserstoffs in unterschiedlichen Sektoren. Hierfür müssen neue Erneuerbare Energien Anlagen in der Region für die Bereitstellung von Grünstrom errichtet werden. Der Großteil des grünen Wasserstoffs wird verschiedenen Anwendungen in Verkehr, Industrie und Wärme zur Verfügung gestellt, wodurch die Treibhausgasemissionen dieser Sektoren reduziert werden. Ein kleinerer Teil des grünen Wasserstoffs wird forschungsseitig genutzt, um eine skalierbare und integrierte Lösung für die wesentlichen Herausforderungen der nächsten Phase der Energiewende zu erproben. Ziel ist hier den Nachweis zu erbringen, dass ein Kraftwerk neuen Typus und auf der Basis von 100 % Erneuerbaren Energien in der Lage ist, alle Systemdienstleistungen zu erbringen, die derzeit von konventionellen Kraftwerken bereitgestellt werden. Aus der Perspektive des Strukturwandels fokussiert das Projekt auf die Stärkung der Wettbewerbsfähigkeit des Wirtschaftsstandortes Lausitz. Die langfristige Zielsetzung ist, Speicherkraftwerke mit einer hochskalierten Erzeugerleistung im dreistelligen Megawattbereich an anderen Industrie- und Kraftwerksstandorten der Lausitz zu realisieren. Das Vorhaben bietet zudem die Chance als Referenzlösung auf andere Standorte, insbesondere andere Reviere, übertragen zu werden.

Referenzkraftwerk Lausitz, Teilvorhaben: Wasserstofferzeugung und Sektorenkopplung

Das Projekt "Referenzkraftwerk Lausitz, Teilvorhaben: Wasserstofferzeugung und Sektorenkopplung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Referenzkraftwerk Lausitz GmbH.Das Reallabor Referenzkraftwerk Lausitz (RefLau) beinhaltet die Planung, Errichtung und den Betrieb eines Wasserstoff-Kraftwerks als technologische Innovation sowie die Vermarktung des grünen Wasserstoffs in unterschiedlichen Sektoren. Hierfür müssen neue Erneuerbare Energien Anlagen in der Region für die Bereitstellung von Grünstrom errichtet werden. Der Großteil des grünen Wasserstoffs wird verschiedenen Anwendungen in Verkehr, Industrie und Wärme zur Verfügung gestellt, wodurch die Treibhausgasemissionen dieser Sektoren reduziert werden. Ein kleinerer Teil des grünen Wasserstoffs wird forschungsseitig genutzt, um eine skalierbare und integrierte Lösung für die wesentlichen Herausforderungen der nächsten Phase der Energiewende zu erproben. Ziel ist hier den Nachweis zu erbringen, dass ein Kraftwerk neuen Typus und auf der Basis von 100 % Erneuerbaren Energien in der Lage ist, alle Systemdienstleistungen zu erbringen, die derzeit von konventionellen Kraftwerken bereitgestellt werden. Aus der Perspektive des Strukturwandels fokussiert das Projekt auf die Stärkung der Wettbewerbsfähigkeit des Wirtschaftsstandortes Lausitz. Die langfristige Zielsetzung ist, Speicherkraftwerke mit einer hochskalierten Erzeugerleistung im dreistelligen Megawattbereich an anderen Industrie- und Kraftwerksstandorten der Lausitz zu realisieren. Das Vorhaben bietet zudem die Chance als Referenzlösung auf andere Standorte, insbesondere andere Reviere, übertragen zu werden.

Referenzkraftwerk Lausitz, Teilvorhaben: Kraftwerksregelung und Betriebsführung

Das Projekt "Referenzkraftwerk Lausitz, Teilvorhaben: Kraftwerksregelung und Betriebsführung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Brandenburgische Technische Universität Cottbus-Senftenberg, Institut für Elektrische und Thermische Energiesysteme, Fachgebiet Regelungssysteme und Netzleittechnik.Im Rahmen des Reallabors Referenzkraftwerk Lausitz ist eine wissenschaftliche Begleitung eines Großprojekts, welches die Errichtung eines modernen Kraftwerks am Standort Spremberg im Industriepark Schwarze Pumpe beabsichtigt, geplant. In dem Kraftwerk werden ausschließlich erneuerbare Energien genutzt. Weiterhin werden Möglichkeiten der Sektorenkopplung erschlossen und neue Wertschöpfungspotentiale durch Systemdienstleistungen im elektrischen Netz der öffentlichen Versorgung aufgezeigt. Ziel des Forschungsvorhabens ist es, das vorgestellte Konzept für ein vollständig systemrelevantes H2-Speicherkraftwerk in allen relevanten Details, die für die Errichtung und Inbetriebnahme sowie den Probebetrieb notwendig sind, zu erarbeiten und im Zusammenwirken des Gesamtprozesses zu optimieren. Hierbei wird die Funktionalität der Komponentenanordnung als Speicherkraftwerk demonstriert. Alle Einzelkomponenten sowie die zugehörige Regelung und Steuerung werden dazu dimensioniert, simuliert, implementiert und bei allen vorgesehen Betriebsarten erprobt. Die Brandenburgische Technische Universität Cottbus-Senftenberg (BTU) entwickelt hierbei in Zusammenarbeit mit dem Fraunhofer IEG (Fh IEG) die Kraftwerksregelung, welche die Bereitstellung der Systemdienstleistungen am Netzkopplungspunkt sicherstellt. Außerdem liefert die BTU eine Analyse des potenziellen Beitrages der Wasserstoff-Rückverstromung zur Bereitstellung eines grundlastfähigen Portfolios aus erneuerbaren Energieanlagen und die Überführung in ein Betriebsführungskonzept.

Sicherer und stabiler Betrieb des stromrichterdominierten Verteilnetzes, Teilvorhaben: Neue Funktionalitäten & Eigenschaften netzbildender Stromrichter im Verbundnetz

Das Projekt "Sicherer und stabiler Betrieb des stromrichterdominierten Verteilnetzes, Teilvorhaben: Neue Funktionalitäten & Eigenschaften netzbildender Stromrichter im Verbundnetz" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: SMA Solar Technology AG.SMA befasst sich mit den Möglichkeiten der PV-, Batterie- und Elektrolyse-Stromrichtertechnik und entsprechender Systemlösungen (insb. großer Solar- und Speicherkraftwerke und Elektrolyseanlagen). Ziel und Schwerpunkt der Untersuchungen von SMA ist hierbei die Analyse und Evaluation der neuen, im Konsortium erarbeiteten Erkenntnisse, Ansätze und Lösungen aus gerätetechnischer Sicht (Wechselrichter), unter Einbeziehung von Aspekten aus Praxis & Forschung auch außerhalb des Konsortiums sowie die experimentelle Umsetzung ausgewählter neuer Funktionalitäten in vorhandenen Geräteplattformen & Systemlösungen und ihre Evaluation im Labortest und Praxiseinsatz. Darüber hinaus sollen - gemeinsam mit den Partnern - international konsensfähige Empfehlungen für die zukünftige Gestaltung der Netzregelung und der Netzanschlussbedingungen für PV- und Speicher-Systeme, inkl. entsprechender praxistauglicher, effizienter, zukunftsfähiger Prüf- & Qualifizierungsverfahren und Standardisierungsvorschläge, erarbeitet werden.

Kosteneffiziente Zuverlässigkeit von PV-Kraftwerken und Wechselrichtertechnik - Aufklärung und Vorhersage von Alterungs- & Fehlervorgängen für Geräteentwicklung und Predictive-Maintenance sowie Realisierung praxisnaher Lösungen, Teilvorhaben: Diagnose des Solargenerators

Das Projekt "Kosteneffiziente Zuverlässigkeit von PV-Kraftwerken und Wechselrichtertechnik - Aufklärung und Vorhersage von Alterungs- & Fehlervorgängen für Geräteentwicklung und Predictive-Maintenance sowie Realisierung praxisnaher Lösungen, Teilvorhaben: Diagnose des Solargenerators" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Institut für Solarenergieforschung GmbH.Aufbauend auf vorangegangenen Forschungsarbeiten zu UV-Fluoreszenz, Elektrolumineszenz und Licht-Induzierter Elektrolumineszenz sollen in diesem Teilprojekt Solargenerator-Analyseverfahren entwickelt werden, die vom Wechselrichter unterstützt werden und damit ein Umverdrahten des Solargenerators für Analysezwecke unnötig machen, qualitativ hochwertigere Analysebilder und zuverlässigere Defektanalysen ermöglichen als üblich. Auf Basis der im Projekt erarbeiteten Erkenntnisse und Lösungen wird das ISFH mit SMA diese Ergebnisse im Anschluss an das Vorhaben bei ihren zukünftigen Produktentwicklungen und in der entsprechenden Serienproduktion nutzen bzw. in entsprechende Dienstleistungsangebote überführen. Dies wird dann generell zu einer Verbesserung der Wirtschaftlichkeit, Zuverlässigkeit und Nachhaltigkeit von Solar- und Speicherkraftwerken und ihren entsprechenden Komponenten führen und somit auch zu einer Beschleunigung des Ausbaus der Erneuerbaren Energien beitragen.

Nutzung der Wasserkraft

Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt. Vom Wasser zum Strom Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet. Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet. Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können. Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠ Wasserrahmenrichtlinie ⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠ Wasserkörper ⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen: Die Unterbrechung der biologischen und morphodynamischen Durchgängigkeit der Fließgewässer. So können Wanderfischarten nicht mehr zu ihren Laich- oder Aufwuchslebensräumen gelangen. Die direkte Schädigung von Organismen in den Wasserkraftturbinen. Mehr als 22 Prozent der Fische, die eine Turbine passieren müssen, werden tödlich verletzt. Mehrere aufeinander folgende Wasserkraftwerke an einem Flusslauf können Populationen gefährden. Die Veränderung des Lebensraumes in der ⁠ Aue ⁠ und im Gewässer durch den Gewässeraufstau und unterhalb von Stauwerken durch einen zu geringen Wasserabfluss im verbleibenden Gewässerbett. Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen. Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft: Strategische Konzepte zur Nutzung der Wasserkraft können Zielkonflikte auflösen. Sie sollen sowohl erschließungswürdige Wasserkraftpotentiale als auch sensible Naturräume berücksichtigen. Nennenswerte Potenziale, um die Klimaschutzziele zu erreichen, liegen in der Modernisierung oder dem Ersatzneubau großer Wasserkraftanlagen (s.u.). In wertvollen und sensiblen Fluss- und Auenlandschaften können die negativen Folgen der Wasserkraftnutzung ihren positiven Beitrag für den ⁠ Klimaschutz ⁠ überwiegen. Bei der Festlegung von Maßnahmen an Wasserkraftstandorten sollte das gesamte betroffene Flussgebiet berücksichtigt werden, insbesondere wenn mehrere Wasserkraftwerke am Flusslauf aufeinander folgen. Es sollten alle geeigneten Maßnahmen umgesetzt werden, die Umweltauswirkungen mindern: Anlagen zum Fischauf- und -abstieg, zum Fischschutz , morphologische Verbesserungsmaßnahmen und die Sicherstellung eines ökologisch wirksamen Mindestwasserabflusses. Die Bund-Länderarbeitsgemeinschaft Wasser hat dazu eine „ Empfehlung zur Ermittlung einer ökologisch begründeten Mindestwasserführung in Ausleitungsstrecken von Wasserkraftanlagen “ veröffentlicht. Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠ Klima ⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein Factsheet erstellt. Wasserkraftnutzung in Deutschland Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten. In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller. Wasserkraftanlagen in Deutschland Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen). Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent. Stromproduktion aus Wasserkraft in Deutschland In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen. Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠ Klimawandel ⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken. Aktuelle Zahlen zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die EEG-Erfahrungsberichte . Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar. Wasserkraftpotenzial in Deutschland Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠ TWh ⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen. Die Rolle der Wasserkraft bei der Energiewende In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie " RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität " des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft. Wasserkraft und Klimawandel Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft untersuchen lassen . Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden. So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern. Kraftwerk Griesheim 1 Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Kraftwerk Griesheim 2 Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Kraftwerk Unkelmühle Wasserkraftanlage in der Sieg (Unkelmühle). Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Sieg (Unkelmühle). Wasserkraft Demo Demonstration der Nutzung von Wasserkraft. Quelle: Stephan Naumann / UBA Demonstration der Nutzung von Wasserkraft. Wasserkraftanlage Öblitz Wasserkraftanlage in der Saale bei Öblitz. Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Saale bei Öblitz. Wasserkraftanlage Saale Wasserkraftanlage in der Saale unterhalb von Jena. Quelle: Stephan Naumann Wasserkraftanlage in der Saale unterhalb von Jena. Wasserkraftwerk Bayerischer Wald Wasserkraftnutzung im Bayerischen Wald. Quelle: Stephan Naumann Wasserkraftnutzung im Bayerischen Wald. Wehranlage Tuebingen Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Quelle: Stephan Naumann Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Kraftwerk Griesheim 1 Kraftwerk Griesheim 2 Kraftwerk Unkelmühle Wasserkraft Demo Wasserkraftanlage Öblitz Wasserkraftanlage Saale Wasserkraftwerk Bayerischer Wald Wehranlage Tuebingen Literatur Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227. Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39. ⁠ BMU ⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010. Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht). International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights. Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18. LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017. LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. https://www.energieatlas.bayern.de/thema_wasser/daten.html . Zugriff am 04.05.2021. MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg. Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748. Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870. Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23. Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011. TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011. ⁠ UBA ⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠ Klima ⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150. UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.

Kommunale sektor- und spartenübergreifende Energieleitplanung

Das Projekt "Kommunale sektor- und spartenübergreifende Energieleitplanung" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Quartiersarbeit Vauban.Zielsetzung: Viele der Praktiker*innen vor Ort stehen derzeit vor der Frage, welche Lösungen (z.B. im Rahmen von energetischen Sanierungsfahrplänen) sie ihren Kunden unter den derzeit sich stark ändernden Rahmenbedingungen empfehlen sollen, um eine zukunftsfähige, kosteneffiziente Energiewende umzusetzen und die Klimaschutzziele zu erreichen. Klar ist, dass bei der Wärmewende die Wärmepumpe aus Klimaschutzgründen eine zunehmend große Rolle spielen wird. Klar ist aber auch, dass Wärmepumpen derzeit als verhältnismäßig teuer gelten und zu einem höheren Strombedarf auch zu Zeiten führen werden, wenn wenig erneuerbarer Strom zur Verfügung steht. Bei der kommunalen Wärmewende ist daher die Stromnachfrage und deren Abdeckung aus klimapolitischer Sicht, aber auch aus Sicht der Kosten und der Nutzung von Synergien auf der kommunalen Ebene (Lastverschiebungen, Effizienzmaßnahmen und Speicherung) eine wichtige Frage. Im Rahmen des hier vorgeschlagenen Projektes soll mit ausgewählten Expert*innen und Praktiker*innen ein entsprechender Realitätscheck durchgeführt werden, welche der zahlreich publizierten Szenarien zu Lösungen im Rahmen von kommunalen Wärmeplänen sich aus der Sicht von Praktiker*innen vor Ort umsetzen lassen und welche eher nicht, bzw. ggf. an praktischen Hindernissen scheitern könnten. Kernfragen, die das Projekt beantworten möchte, lauten: - Wie kann eine sektor- und spartenübergreifende Energieleitplanung aus Praktikersicht aussehen? - Welche Vor-/Nachteile hat eine eher dezentralere Abdeckung der Residuallast und welche Synergien lassen sich im Rahmen einer Berücksichtigung bei kommunalen Akteuren heben? - Welche Vor-/Nachteile haben demgegenüber große zentrale Residualkraftwerke auf der „grünen Wiese“? - Welche politischen Rahmenbedingungen sind für dezentrale oder eher zentralere Lösungen notwendig? Fazit: Die Praxis bei Strom und Wärme folgt derzeit weder den Szenarien noch den Zielvorgaben der Politik. Die Stromversorgung mit Sonne und Wind unter Einbeziehung der Infrastrukturkosten (Stromtransport und Ausgleichskraftwerke kostet aktuell noch mehr als Verbrennung fossiler Brennstoffe, aber um ein vielfaches weniger als das Verfehlen der Klimaziele, wenn die externen Kosten berücksichtigt würden. Die Kosten für den derzeit geplanten Netzausbau, Netzengpässe und den Bau emissionsarmer Kraftwerke könnten die Netzentgelte mehr als verdoppeln und eine sozialverträgliche Wärmewende gefährden. Politik muss lokale Anreize für mehr Flexibilität vor Ort schaffen, um den Ausbau der Stromnetze und der mit grünen Brennstoffen betriebenen Residuallastkraftwerken zu begrenzen. Eine sektor- und spartenübergreifenden Energieplanung ermöglicht Flexibilitäten vor Ort. Biogas sollte in Speicherkraftwerken zum Ausgleich saisonaler Residuallasten genutzt werden. Bilanzierung, Monitoring, Nachjustierung und Bewertung der Sanierungsmaßnahmen anhand von Treibhausgasen tragen zur Effizienz und zur Einsparung von Treibhausgasen bei. Die Sanierung der Gebäudehülle ist nur im Rahmen üblicher Sanierungszyklen wirtschaftlich darstellbar. Wohnraumsuffizienz und Entzug von Wohnungen aus dem Markt schaffen sozialverträglich sanierten Wohnraum. Förderprogramme für die Sanierung sind an der tatsächlichen Einsparung von Treibhausgasen und in der Höhe an sozialen Kriterien zu bemessen.

Regenerative Speicherkraftwerke: Versorgungssicherheit im Stromsystem und lokale Wärmenetze

Das Projekt "Regenerative Speicherkraftwerke: Versorgungssicherheit im Stromsystem und lokale Wärmenetze" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: META-I.D. Ökologische Innovation GmbH.In Zukunft wird die Energieversorgung verstärkt durch Strom aus Wind und Sonne kommen. Je mehr erneuerbare Erzeugung, desto größer die zeitliche Dynamik des Angebots. Die Bandbreite der Einspeiseleistung dominiert zunehmend auch die Höhe der Residuallast, also die Deckungslücke zwischen EE und dem jeweiligen Bedarf im deutschen Stromnetz. Zur Entlastung der Netze sind erzeugungsnahe Flexibilitäten erforderlich. Es werden erhebliche, dafür seltener genutzte Kraftwerkskapazitäten für die Deckungslücken benötigt. Hier können flexible Biogasanlagen mit BHKW einen wichtigen und effizienten Beitrag leisten und die Residuallast ausgleichen, bis in den Vierzigerjahren ggfs. Wasserstoff an dessen Stelle treten kann. Im ländlichen Raum sollen außerdem Wärmenetze erschlossen und Abwärme effizient genutzt werden. Damit werden auch im ländlichen Raum im Sinn des GEG (derzeit noch im Entwurf) die Gebäude- Einzelheizungen durch kostengünstige klimafreundliche Heizsysteme ersetzt. Zudem wird die Wertschöpfung aus Biogas verbessert. Damit werden flexible Speicherkraftwerke Biogasanlagen eine größere Rolle im Energiesektor spielen und langfristig unabhängig von Förderung. Damit ist aus volkswirtschaftlichen und politischen Gründen eine Weiterentwicklung der Biogasanlagen zu flexiblen Speicherkraftwerke sinnvoll. Das Projekt 'Speicherkraftwerke' zielt darauf ab, durch die Investition in flexible Speicherkraftwerke den Beitrag der Biogasanlagen im Energiesystem zu festigen. Das Projekt 'Speicherkraftwerke' der Flexperten wird Betreiber von Biogasanlagen 1. im Forum Speicherkraftwerke im Rahmen der Biogas Trade Fair 2023 2. in der Seminarserie Erfolgreiche Praxis Speicherkraftwerke sowie 3. mit einer Informationsbroschüre über die Flexibilisierung von Biogasanlagen aufklären, motivieren und einen Investitionsschub auslösen.

Errichtung und Betrieb eines innovativen Speicherkraftwerkes in 03185 Teichland OT Neuendorf; Vorhaben-ID: Süd-G01523

Die Firma Lausitz Energie Kraftwerke AG, Leagplatz 1 in 03050 Cottbus beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück in der Gemarkung Neuendorf, Flur 5, Flurstück 133 ein innovatives Speicherkraftwerk zu errichten und zu betreiben. Das Vorhaben umfasst im Wesentlichen: - eine Gas- und Dampfturbinenanlage mit einer Feuerungswärmeleistung von 1 445 MW mit zugehörigem Abhitzekessel sowie der zusätzlich erforderlichen Anlagen- und Prozesstechnik, - einen elektrisch beheizbaren thermischen Feststoffspeicher inklusive Gebäude für Heizgebläse, Feststoffspeicher und Dampferzeuger mit einer thermischen Gesamtkapazität von 1 000 MWh, - eine Wasserstoff-Elektrolyseanlage mit einer Wasserstoff-Produktionsleistung in Höhe von 660 kg/h einschließlich Wasserstoffspeicher mit einer Lagermenge von 11,6 t, - einen Hilfskessel mit Erdgasfeuerung mit einer Feuerungswärmeleistung von < 50 MW zur Wärme-/Dampfversorgung im Anfahrbetrieb und während Stillstandszeiten der Gas- und Dampfturbinenanlage, - mindestens zwei Schwarzstart-Dieselgeneratoren mit einer Feuerungswärmeleistung von 49 MW für eine jährliche Betriebsdauer von < 300 h,  einen Notstrom-Dieselgenerator mit einer Feuerungswärmeleistung von 6 MW für eine jährliche Betriebsdauer von < 300 h, - Heizölversorgung für die Schwarzstart-Dieselgeneratoren und die Gasturbine bei Ausfall der Gasversorgung inklusive Lagertank mit einem Volumen von 11 000 m³, - Betriebs- und Nebengebäude. Es handelt sich um Anlagen der Nummern 1.1 GE, 4.1.12 GE und 9.3.2 V des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach den Nummern 1.1.1 X, 4.2 A und 9.3.3 S der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung. Das beantragte Vorhaben fällt gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie. Für das Vorhaben wurden darüber hinaus wasserrechtliche Erlaubnisse gemäß § 8 in Verbindung mit § 10 des Wasserhaushaltsgesetzes (WHG) zur Benutzung eines Gewässers bei der unteren Wasserbehörde des Landkreises Spree-Neiße/Wokrejs Sprjewja-Nysa beantragt. Gegenstand der Verfahren ist das Entnehmen und Ableiten von Wasser aus oberirdischen Gewässern sowie das Einbringen und Einleiten von Stoffen in Gewässer. Die Inbetriebnahme der Anlage ist im Juni 2029 vorgesehen. Für das Vorhaben wurde eine erste Teilgenehmigung nach § 8 BImSchG beantragt. Diese umfasst: - die Errichtung des Fundaments für den Gasturbinensatz, - die Errichtung des Pförtnergebäudes, - die Durchführung der Umweltverträglichkeitsprüfung für das Gesamt-Vorhaben. Gegenstand einer oder weiterer Teilgenehmigungen soll die Errichtung der weiteren maschinentechnischen Komponenten und Betriebs- und Nebengebäude sowie der Betrieb der Gesamtanlage sein.

Speicherkraftwerk Thiendorf - SKW Speicherkraftwerk GmbH

Die SKW Speicherkraftwerk GmbH beantragte beim Landratsamt des Landkreises Meißen als zuständige Genehmigungsbehörde nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) in der Fassung der Bekanntmachung vom 17.05.2023 (BGBl. I S. 1274; 2021 I S. 123), das zuletzt durch Artikel 2 Absatz 3 des Gesetzes vom 19.10.2022 (BGBl. I S. 1792) geändert worden ist, die immissionsschutzrechtliche Genehmigung zur Errichtung und Betrieb eines Speicherkraftwerkes in 01561 Thiendorf, Gärtnersiedlung, Gemarkung Thiendorf, Flst.-Nrn. 452/3 und 455/1. Zuständige Genehmigungsbehörde ist gemäß § 2 Absatz 1 Satz 1 in Verbindung mit § 1 Nummer 3 des Ausführungsgesetzes zum Bundes-Immissionsschutzgesetz und zum Benzinbleigesetz (AGImSchG) vom 04.07.1994 (SächsGVBl. S. 1281), zuletzt geändert durch das Gesetz vom 23.03.2022 (SächsGVBl. S. 256), in Verbindung mit der Verordnung des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft über Zuständigkeiten zur Ausführung des Bundes-Immissionsschutzgesetzes, des Benzinbleigesetzes, des Treibhausgas-Emissionshandelsgesetzes und der auf Grund dieser Gesetze ergangenen Verordnungen (Sächsische Immissionsschutz-Zuständigkeitsverordnung – SächsImSchZuVO), in der Fassung der Bekanntmachung vom 14.12.2018 (SächsGVBl. S. 831), zuletzt geändert durch Artikel 2 des Gesetzes vom 09.02.2022 (SächsGVBl. S. 144), der Landkreis Meißen als untere Immissionsschutzbehörde. Die örtliche Zuständigkeit ergibt sich aus § 3 Absatz 1 Nummer 2 Verwaltungsverfahrensgesetz (VwVfG) in der Fassung der Bekanntmachung vom 23.01.2003 (BGBl. I S. 102), zuletzt geändert durch Artikel 24 Absatz 3 des Gesetzes vom 25.06.2021 (BGBl. I S. 2154), in Verbindung mit § 1 des Gesetzes zur Regelung des Verwaltungsverfahrens- und des Verwaltungszustellungsrechts für den Freistaat Sachsen (SächsVwVfZG) vom 19.05.2010 (SächsGVBl. S. 142), zuletzt geändert durch Artikel 3 des Gesetzes vom 12.07.2013 (SächsGVBl. S. 503). Das beantragte Vorhaben bedarf auf Grund der §§ 4 in Verbindung mit 10 BImSchG und den §§ 1 und 2 der Vierten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über genehmigungsbedürftige Anlagen – 4. BImSchV) in der Fassung der Bekanntmachung vom 31.05.2017 (BGBl. I S. 1440), zuletzt geändert durch Artikel 1 der Verordnung vom 12.10.2022 (BGBl. I S. 1799), in Verbindung mit den Nummern 1.2.3.1/V sowie 9.1.1.2/V des Anhangs 1 zur 4. BImSchV einer immissionsschutzrechtlichen Genehmigung.

1 2 3 4