Darstellung der Waldflächen untergliedert nach Baumarten und Altersklassen, im Sinne des Thüringer Waldverzeichnisses nach Thüringer Waldgesetz.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.
Das Phytoplankton des Südozeans wird von der Kieselalge Fragilariopsis dominiert. Sie spielt eine wichtige Rolle für dessen Primärproduktion. Marine Primärproduktion wird durch spezifische Wechselwirkungen auf engstem Raum zwischen Mikroalgen und Bakterien gesteuert und durch ihren gegenseitigen Bedarf an essentiellen Spurenelementen, Mikro- und Makro-Nährstoffen getrieben. Aktuelle Mikrobiomstudien an verschiedenen Phytoplanktonarten deuten darauf hin, dass sie einzigartige Mikrobiome beherbergen, die innerhalb der Planktonarten über lange Zeitskalen hinweg stabil sind. Doch die mechanistischen Prozesse, die gerichtete Assoziationen zwischen Mikroalgen und Bakterien verursachen, sind kaum verstanden.Die Haupthypothese dieses Antrags postuliert, dass Fragilariopsis vergleichbare Erkennungsstrategien als Reaktion auf Umweltbakterien benutzt, wie Tiere und Pflanzen, trotz der phylogenetischen Distanz zwischen Kieselalgen und höheren Eukaryoten. Diese hypothetische Analogie ermöglicht den Disziplinen-übergreifenden Transfer von sehr gut etablierter biochemischer Methodik zu Immunität und Mikrobiomen von Tieren und Pflanzen auf eine marine Mikroalge.Das Konzept aktiver Erkennung und Selektion ist im Kontext von Immunität multizellulärer Organismen, bis zu multizellulären marinen Makroalgen, gut verstanden, nicht aber für Mikroalgen. Solche Reaktionen werden durch rezeptorvermittelte Erkennung von bakteriellen Substanzen ausgelöst und durch gut untersuchte Signalkaskaden (z.B. über Stickstoffmonoxid, NO) vermittelt. Dies führt zur Regulation von quantifizierbaren Stress-Antworten, wie intrazellulären reaktiven Sauerstoffspezies oder zu einer Verschiebung des Glutathion- zu Glutathion-Disulfid-Verhältnisses. Teilweise wurden diese Reaktionen auf zellulären Stress in Mikroalgen bereits verifiziert und es gibt erste Hinweise auf NO-Signalkaskaden und NO-Synthetase Genen in Diatomeen. Dieser Antrag befasst sich daher mit relevanten Fragestellungen des DFG SPP zur Notwendigkeit eines "besseren Verständnisses polarer Prozesse und Mechanismen" und der "Reaktion [von im Südozean beheimateten Organismen] auf veränderte Umweltbedingungen". Konkret werden wir verschiedene Bakterien aus Fragilariopsis-Mikrobiomen isolieren, kultivieren und identifizieren. Parallel dazu werden verschiedene Fragilariopsis-Ökotypen axenifiziert. In Kokultur-Testsystemen werden wir bekannte und etablierte chemische und molekulare Messverfahren einsetzen, um intra- und extrazelluläre Reaktionen von Fragilariopsis auf Bakterien und molekulare bakterielle Signale, wie z.B. Lipopolysaccharide, zu charakterisieren und zu quantifizieren. Das kurzfristige Ziel ist, eine Reaktion von Fragilariopsis auf Bakterien oder bakterielle Signalmoleküle zu bestätigen. Langfristig wollen wir den Erkennungsprozess unter zukünftigen Südozean-Klimabedingungen experimentell erforschen, um die Anfälligkeit des Fragilariopsis-Holobionten unter diesen Klimaveränderungen zu verstehen.
All EU Member States are requested to monitor birds listed in the Birds Directive (2009/147/EC) and send a report about the progress made with the implementation of the Directive every 6 years following an agreed format. The assessment of breeding population short-term trend at the level of country is here presented. The spatial dataset contains gridded birds distribution data (10 km grid cells) as reported by EU Member States for the 2013-2018 period. The dataset is aggregated by species code and country in the attribute CO_MS. By use of the aggregated attribute [CO_MS], the tabular data can be joined to the spatial data to obtain e.g. the EU population status and trend. This metadata refers to the INTERNAL dataset as it includes species flagged as sensitive by Member States. Therefore, its access is restricted to only internal use by EEA.
Verbreitung der Arten im Land Brandenburg. Die räumliche Verortung erfolgt auf Basis eines Gitters (oder Rasterzellenbelegung) mit Lambert Azimuthal Equal Area (LAEA) Projektion. Der Datensatz enthält drei Gittergrößen (1x1 km, 5x5 km und 10x10 km), welche in Abhängigkeit zur Sensibilität der Art erzeugt werden. Zugehörige Sachdaten werden als qualifizierte Artenliste ausgegeben. Diese bestehen aus einer Liste aller durch das LfU geführten Monitoringarten über einen Zeitraum der letzten 10 Jahre. Alle Jahre, aus denen Nachweise vorliegen, werden genannt. Als qualifizierende Information wird für jede Art der höchste festgestellte Reproduktionsstatus angegeben. Jede Art wird in dieser Liste für jeden Quadranten in den oben genannten Gittergrößen separat aufgeführt. Verbreitung der Arten im Land Brandenburg. Die räumliche Verortung erfolgt auf Basis eines Gitters (oder Rasterzellenbelegung) mit Lambert Azimuthal Equal Area (LAEA) Projektion. Der Datensatz enthält drei Gittergrößen (1x1 km, 5x5 km und 10x10 km), welche in Abhängigkeit zur Sensibilität der Art erzeugt werden. Zugehörige Sachdaten werden als qualifizierte Artenliste ausgegeben. Diese bestehen aus einer Liste aller durch das LfU geführten Monitoringarten über einen Zeitraum der letzten 10 Jahre. Alle Jahre, aus denen Nachweise vorliegen, werden genannt. Als qualifizierende Information wird für jede Art der höchste festgestellte Reproduktionsstatus angegeben. Jede Art wird in dieser Liste für jeden Quadranten in den oben genannten Gittergrößen separat aufgeführt.
Zielsetzung und Anlass: Einigen naturschutzrelevanten Wildtieren, wie beispielsweise Wildkatzen und Luchsen, ist es bislang stellenweise noch möglich, die intensiv genutzte Kulturlandschaft zu durchwandern, um sich neue Habitate zu erschließen. Der urbane Raum, wie auch andere Formen der Landnutzung, breiten sich jedoch stetig aus. Deckungsreiche Strukturen als Trittsteinbiotope sind rar oder verschwinden durch die Intensivierung der anthropogenen Landnutzung. Die Zersiedlung und Fragmentierung unserer Landschaft stellt damit eines der größten Umweltprobleme unserer Zeit dar. Die Umsetzung von Biotopverbundkonzepten und der Erhalt geeigneter Trittsteinbiotope sind daher wichtiger denn je. Industrie- und Gewerbeflächen könnten hierbei eine bislang übersehene Rolle spielen und eine vergleichsweise kostengünstige Ergänzung zur Neuanlegung von Trittsteinbiotopen sein. Bewegungsdaten einzelner Wildtiere lassen vermuten, dass auf bestimmten Industrie- und Gewerbeflächen aufgrund der dort vorhandenen Deckungsstrukturen, zeitlich eingeschränkter Nutzung oder Betretungsverboten ein bisher unterschätztes Potential für Trittsteinbiotope vorhanden ist. Bei Biotopverbundkonzepten oder naturschutzfachlichen Einschätzungen sind diese Strukturen jedoch bislang nicht beachtet worden, da sie sich auf anthropogen genutzten Flächen befinden. Diese werden von den gängigen Habitatmodellen zu naturschutzrelevanten Wildtieren, die mit großen Stichproben auf das Abbilden von Gesamtpopulationen ausgelegt sind, überwiegend als 'gemieden' bewertet. Es gilt jedoch zu bedenken, dass sich vor allem einzelne Individuen und nicht die Gesamtheit einer Population in neue Lebensräume vorwagen und dabei auf ihren Wegen auch schwierige und abnorme Verhältnisse in Kauf nehmen. In Auswertungen, die sich nicht explizit mit jenen Individuen befassen, die sich außergewöhnlich viel auf Transithabitaten aufhalten und Trittsteinbiotope auch tatsächlich nutzen, könnten daher wichtige Informationen zur Nutzung von Trittsteinbiotopen entgehen, da diese als 'Ausreißer' im jeweiligen Datensatz angesehen werden. Das führt dazu, dass bisherige Konzepte zu Industrie- und Gewerbeflächen vor allem auf die aktive Gestaltung kleiner Biotope für weniger mobile Arten wie z.B. bedrohte Insekten, Amphibien, oder Reptilien abzielen. Der Schutz von schon vorhandenen, deckungsreichen Strukturen auf derartigen Flächen, um diese als Trittsteinbiotope für größere Wildtiere verfügbar zu machen, spielte dabei jedoch bisher keine Rolle. Mit diesem Projekt wollen wir das Potential von Industrie- und Gewerbeflächen als Trittsteinbiotope untersuchen und auf dieses aufmerksam machen, um so die Durchlässigkeit der Landschaft für Wildtiere zu verbessern. Es ist jedoch anzunehmen, dass sich nicht alle Industrie- und Gewerbeflächen gleichermaßen als Trittsteinbiotope für Wildtiere eignen. Zur Bestimmung potentieller Trittsteinbiotope, zum Schutz relevanter Strukturen und zur praktischen Anwendung in Verbundkonzepten wäre es wichtig, geeignete und ungeeignete Flächen zu unterscheiden. Das diesbezügliche Potential derartiger Fläche sollte daher individuell anhand konkreter Merkmale bestimmbar sein. Hierfür wäre es beispielsweise praktikabel zu wissen, auf welchen Industriezweigen sich vermehrt geeignete Vegetationsstrukturen befinden. Auch die Frage, ob und warum prinzipiell geeignete Strukturen auf Industrieflächen von Wildtieren nicht genutzt werden (beispielsweise, weil keine Löcher im Zaun vorhanden sind) sollte auf den Grund gegangen werden. Ziel des Projekts ist es daher, auf Grundlage gängiger landschaftsbeschreibender Daten, Faktoren zu bestimmen, mittels derer die als Trittsteinbiotope geeigneten Industrie- und Gewerbeflächen sicher klassifiziert werden können. Dafür müssen die für Wildtiere relevanten Bedingungen auf diesen Flächen, beispielsweise hinsichtlich Deckung und Störung, gut bekannt und zu kategorisieren sein. (Text gekürzt)
| Origin | Count |
|---|---|
| Bund | 261 |
| Europa | 6 |
| Kommune | 2 |
| Land | 48 |
| Wissenschaft | 7 |
| Type | Count |
|---|---|
| Förderprogramm | 105 |
| Hochwertiger Datensatz | 1 |
| Text | 121 |
| unbekannt | 59 |
| License | Count |
|---|---|
| geschlossen | 9 |
| offen | 135 |
| unbekannt | 142 |
| Language | Count |
|---|---|
| Deutsch | 271 |
| Englisch | 45 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Datei | 9 |
| Dokument | 20 |
| Keine | 214 |
| Webdienst | 14 |
| Webseite | 52 |
| Topic | Count |
|---|---|
| Boden | 184 |
| Lebewesen und Lebensräume | 286 |
| Luft | 173 |
| Mensch und Umwelt | 262 |
| Wasser | 185 |
| Weitere | 280 |