To allow the analysis of hydrogen in spinel-structured oxides (hereafter referred to as “spinels”) by secondary ion mass spectrometry, Relative Sensitivity Factors (RSFs), which are typically matrix-dependent, need to be determined. Matrices in natural spinels vary significantly due to the wide range of solid solutions that these nominally anhydrous minerals display. Previous work (Zellmer et al., 2025) has presented RSF values of 16O2H relative to 18O for five natural spinels of variable Al2O3 content. Using the same implanted crystals, we have here expanded this dataset with additional spinels, applying depth profiling under different conditions in a different laboratory. We provide the RSF values of 16O2H relative to 18O, which match the previously available data. We also provide the RSF values of 2H relative to 18O. This in principle allows analysis not only of the OH dimer, but also the H monomer for hydrogen analysis in spinels. However, we note that the significantly higher RSF values for 2H, here between 1.12 x 10^22 and 3.01 x 10^22 atoms per cm3, suggest dimer analysis is preferable because hydrogen monomer count rates will be low. For the RSF of 16O2H relative to 18O, our data confirm an increase with increasing Al2O3 content, here from 2.59 x 10^20 to 2.51 x 10^21 atoms per cm3. When we combine our new data and those of Zellmer et al. (2025), the increase of this RSF with Al2O3 follows a second order polynomial form: RSF = 1.52 x 10^17 Al2O3^2 + 2.12 x 10^19 Al2O3 + 2.76 x 10^20, yielding an r2 value of 0.974, where r is the correlation coefficient. The relative uncertainties in the RSF values based on repeat analyses are circa ±35% (2SE) for 2H relative to 18O and circa ±23% (2SE) for 16O2H relative to 18O, again suggesting that hydrogen analysis should target the OH dimer rather than the H monomer. One ilmenite sample gave RSF values of 3.40 x 10^22 atoms per cm3 (±39.2%, 1RSD) for 2H, and 8.11 x 10^20 atoms per cm3 (±0.5%, 1RSD) for 16O2H. This sample will, however, not be considered further here.
Spinel-structured oxides (hereafter referred to as ‘spinels’) are a group of nominally anhydrous minerals characterized by a wide range of solid solutions. To allow the analysis of hydrogen in spinels by secondary ion mass spectrometry, Relative Sensitivity Factors (RSFs), which are typically matrix-dependent, need to be determined. Anticipating analysis of the OH- dimer rather than the H+ monomer, we present here RSF values of 16O2H relative to 18O for five natural spinels, including franklinite, Fe-bearing spinel, Mg-chromite, magnetite, and jacobsite. The Al2O3 content in the matrix of these crystals ranged from 0.09 wt% to 67.54 wt%. Our data indicate increasing RSF values with increasing Al2O3 content, from 2.76 x 10^20 to 2.72 x 10^21 atoms per cm3, with an RSD for two repeat analyses of about 4.3%. The increase of RSF with Al2O3 follows a second order polynomial form: RSF = 2.27x10^17 Al2O3^2 + 2.05 x10^19 Al2O3 + 3.02 x10^20. Further analyses at other instruments under different analytical conditions will be required to understand how robust the accuracy of these data can be considered. Expanded analyses of the here presented spinels, including depth-profiling, are reported in Zellmer et al. (2025).
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
Das Ziel dieses Verbundvorhabens ist es, durch eine Vernetzung der führenden Materialforschungsinstitutionen in Deutschland, Kathodenmaterialien für Hochleistungsbatterien durch schnelle Ionentransportvorgänge gezielt zu verbessern. Das langfristige Ziel ist dabei die Integration regenerativer Energieträger, insbesondere der Wind- und Solarenergie, in eine grundlastfähige und witterungsunabhängige Energieversorgung der Zukunft. Die Teilprojekte im Forschungszentrum Jülich konzentrieren sich unter anderem auf die Verbesserung der elektrischen Leitfähigkeit der Materialien und die Identifizierung der für die Limitierung des Ladungstransports maßgeblichen Mechanismen. Durch eine Korrelation der Ergebnisse bezüglich der atomistischen und der makroskopischen, elektrochemischen Eigenschaften sollen Wirkungszusammenhänge abgeleitet werden, die eine systematische Materialverbesserung ermöglichen. Im Rahmen der beiden Teilprojekte am Forschungszentrum Jülich werden oxidische Kathodenwerkstoffe mittels nasschemischer Verfahren (IEK-1) und über eine Mischoxidroute (IEK-9) synthetisiert. Die atomistischen Vorgänge werden dabei mittels EPR-Spektroskopie untersucht, während Ladungstransportvorgänge mit Hilfe der NMR-Spektroskopie charakterisiert werden. Die weiterentwickelten Kathodenmaterialien werden für die Herstellung von Batterien verwendet, an denen dann die elektro-chemischen Eigenschaften auf makroskopischer Ebene untersucht werden. Die daraus gewonnenen Erkenntnisse fließen dann in ein sogenanntes Multiskalenmodell ein, welches wiederum zur späteren Herstellung eines Gesamtbauteils verwendet wird.
Übergeordnetes Ziel ist die Bereitstellung verbesserter Kathodenmaterialien für Hochleistungsbatterien hoher spezifischer Energiedichte. Hierzu sind die bei neuen Spinellmaterialien relevanten Limitationen zu identifizieren und die Materialien auf dem Verständnis der in den Spinellen ablaufenden Prozesse zu optimieren. Der Fokus liegt auf der Aufklärung des Wechselspiels zwischen Defekten, die für einen guten ionischen Transport wichtig und durch den zyklischen Li-Aus- und -Wiedereinbau auch unvermeidlich sind. Zu den im Gesamtverbund vorgesehenen 7 Arbeitspaketen wird vorrangig zu AP2 Strukturaufklärung, AP4 magnetische Eigenschaften, AP5 Grenzflächenanalytik und AP7 Elektrochemische Charakterisierung beigetragen. Die methodische Expertise ist vorhanden, so dass mit Projektbeginn Untersuchungen an neuen Spinellen beginnen können. Durch elektrochemische Charakterisierungsverfahren werden die wichtigsten Kenngrößen zur Bewertung des Leistungspotenzials der neuen Materialien zunächst in einem standardisierten Test bestimmt. Aussichtsreiche Kandidaten werden durch eine umfassende Materialanalytik weiter untersucht, um neben den Wirkungsmechanismen auch die spezifischen Limitationen zu ermitteln. Durch systematische Untersuchungen von chemischen und strukturellen Variationen werden so Korrelationen zwischen der Zusammensetzung in dotierten Spinellen sowie kristallographischer Details und dem elektrochemischen Verhalten aufgeklärt und so eine gezielte Optimierung ermöglicht.
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".
| Origin | Count |
|---|---|
| Bund | 5 |
| Wissenschaft | 18 |
| Type | Count |
|---|---|
| Förderprogramm | 5 |
| unbekannt | 18 |
| License | Count |
|---|---|
| offen | 7 |
| unbekannt | 16 |
| Language | Count |
|---|---|
| Deutsch | 5 |
| Englisch | 18 |
| Resource type | Count |
|---|---|
| Keine | 20 |
| Webseite | 3 |
| Topic | Count |
|---|---|
| Boden | 21 |
| Lebewesen und Lebensräume | 17 |
| Luft | 5 |
| Mensch und Umwelt | 23 |
| Wasser | 1 |
| Weitere | 23 |