API src

Found 726 results.

Related terms

Langjähriges Mittel der Lufttemperatur 1961-1990 (Umweltatlas)

Verteilung und Höhe des langjährigen Temperaturmittels (1961-1990) in Berlin und dem näheren Umland auf der Grundlage mobiler und stationärer Messungen, Bearbeitungsstand Januar 2001.

Klimaanalyse 2022

Deutscher Wetterdienst DWD 1996: Klimakarten für das Land Berlin, Teil 1: Bioklima Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, unveröffentlicht. GEO-NET 2013: Klimaökologische Untersuchung „Tempelhofer Freiheit“ in Berlin – Entwurf Rev. 02, im Auftrag der Tempelhof Projekt GmbH, Berlin unveröffentlicht. GEO-NET 2022: Regionale Kaltluftströmungen in Deutschland. Eigene Untersuchung. Unveröffentlicht. Groß, G. 1989: Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies, in: Beitr. Phys. Atmosph.,H 62, S. 57-72. Groß, G. 2002: The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model, in: Meteor.Z.schr. Vol. 11 Nr.5, S.701-710. Höppe, P. 1984: Die Energiebilanz des Menschen. Münchener Universitätsschriften, Meteorol. Inst., Wiss. Mitt. 49. Höppe, P., Mayer, H. 1987: Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft und Stadt 19 (1), S. 22–29. Kiese, O. et al. 1992: Stadtklima Münster. Entwicklung und Begründung eines klimarelevanten Planungskonzeptes für das Stadtgebiet von Münster. Stadt Münster – Werkstattberichte zum Umweltschutz 1/1992. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Internet: https://www.berlin.de/lageso/service/downloadcenter/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Digitales Geländemodell (DGM), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Matzarakis, A., Mayer, H., 1996: Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7-10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Matzarakis, A., Rutz, F., Mayer, H., 2000: Modellierung der mittleren Strahlungstemperatur in urbanen Strukturen, Fachtagung METTOOLS, Stuttgart 2000. Internet: https://www.urbanclimate.net/matzarakis/papers/Tmrt_mettoolsiv.PDF (Zugriff: 04.02.2019) Mosimann, Frey, Trute, Wickenkamp 1999: Karten der klima- und immissionsökologischen Funktionen – Instrumente zur prozessorientierten Betrachtung von Klima und Luft in der Umweltplanung, in: Naturschutz und Landschaftsplanung 31,(4),S. 101-108, Stuttgart. Moriske & Turowski 2002: Handbuch für Bioklima und Lufthygiene, 8. Ergänzungslieferung, Ecomed-Verlag, Landsberg. Richter & Röckle (iMA Immissionen, Meteorologie Akustik) o.J.: Das numerische Simulationsmodell FITNAH, digitale PDF-Datei, Freiburg. Internet: https://www.ima-umwelt.de/fileadmin/Dokumente/Klima/fitnah_kurzuebersicht.pdf (Zugriff am 27.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung, Baue und Wohnen Berlin) (Hrsg.) 2020: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2020.pdf (Zugriff 23.05.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/download/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 25.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: https://www.stadtentwicklung.berlin.de/soziale_stadt/sozialraumorientierung/de/prisma.shtml (Zugriff 26.11.2015) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025a: Stadtklimaanalyse Berlin 2020/2022: Dokumentation der Datengrundlagen, Modellsimulation und Klimaanalyse. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimaanalyse_2022.pdf (Zugriff 22.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025b: Klimamodellierung 2022: Auswertung von Messdaten ausgewählter Klimastationen in Berlin und Potsdam. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimastationen_2022.pdf (Zugriff 22.04.2025) VDI (Verein Deutscher Ingenieure) 2008: Richtlinie VDI 3785, Blatt1, Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 11.05.2009) VDI (Verband Deutscher Ingenieure) 2015: Richtlinie VDI 3787 Blatt 2 Umweltmeteorologie: Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas. Verein Deutscher Ingenieure, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff 02.04.2024) VDI (Verein Deutscher Ingenieure) 2022: Richtlinie VDI 3787, Blatt2, Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 02.04.2025) Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Textteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Abbildungsteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001: Umweltatlas Berlin, Karte 04.07 Klimafunktionen, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2000/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2003: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2004: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2022: Umweltatlas Berlin, Karte 04.10 Klimamodellierung Berlin – Klimaanalysekarten 2022, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2022/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2018: Umweltatlas Berlin, Karte 03.11.2 Verkehrsbedingte Luftbelastung im Straßenraum 2020 und 2025, Berlin. Internet: https://www.berlin.de/umweltatlas/luft/strassenverkehr-emissionen-und-immissionen/2018/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2021: Umweltatlas Berlin, Karte 01.02 Versiegelung, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/versiegelung/2021/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2015: Umweltatlas Berlin, Karte 01.11.3 Naturnähe, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/bodenfunktionskriterien/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Umweltatlas Berlin, 2022, Karte 04.12 Entwicklung der Anzahl ausgewählter klimatologischer Kenntage, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimawandel/2022/zusammenfassung/ SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Berlin. Internet: https://gdi.berlin.de/geonetwork/srv/ger/catalog.search#/metadata/0a7c53a5-b29d-3f45-9734-1c811045e6c2 (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Planungshinweiskarte Stadtklima, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Reale Nutzung der bebauten Flächen / Grün- und Freiflächenbestand 2020. Internet: https://www.berlin.de/umweltatlas/nutzung/flaechennutzung/2020/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Gebäudehöhen. Internet: https://www.berlin.de/umweltatlas/nutzung/gebaeudehoehen/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Vegetationshöhen. Internet: https://www.berlin.de/umweltatlas/biotope/vegetationshoehen/2020/methode/ (Zugriff 16.04.2025)

Entwicklung der Anzahl ausgewählter klimatologischer Kenntage 2022 (Umweltatlas)

Die Entwicklung der Anzahl ausgewählter klimatologischer Kenntage ist ein Ergebnis der durchgeführten Klimamodellierung 2022 im Land Berlin. Mit dem Angebot der Kenntage ist ein Blick zur Entwicklung des Stadtklimas im Land Berlin möglich. Betrachtet werden die drei Parameter bestehend aus Sommertage, Heiße Tage und Tropennächte in unterschiedlichen Zeiträumen. Die Kenntagsentwicklung ist räumlich für das gesamte Stadtgebiet von Berlin in Karten dargestellt. Die Anzahl und Verteilung der jeweiligen klimatologischer Kenntage ist für den Referenzzeitraum 1971 bis2000 sowie für zwei Zeitabschnitte in der Zukunft 2031 bis2060 und 2071 bis2100 modelliert worden. Zudem wurde ausgehend vom Referenzzeitraum die Zunahme der Anzahl der Kenntage gegenüber den beiden Zeitschnitten jeweils berechnet. Die Karten werden jeweils in einem 10x10 m Raster und als Mittelwerte pro Block(teil)fläche (ISU5) angeboten.

Klimabewertungskarten 2015 (Umweltatlas)

Die Klimabewertungskarten bieten die Grundlage für die Berücksichtigung klimatischer Belange bei den Planungen in der Stadtentwicklung. Es gibt insgesamt drei Planungshinweiskarten.

Weiterentwicklung einer anwenderfreundlichen Nutzeroberfläche für das UV-Modell des Stadt-Klimamodells PALM

Straßenbaumtest Berlin

Stadtbäume – und hier vor allem die Straßenbäume – erbringen unverzichtbare Ökosystemleistungen u.a. im Hinblick auf den Klimaschutz und die Klimaanpassung, wie die Absenkung der Temperatur und die Schattenbildung im Sommer. Insofern bedeuten Bäume für innerstädtische Stadtquartiere eine wesentliche Lebensqualität. Ferner erfüllen sie diverse weitere Wohlfahrtswirkungen wie beispielsweise als Biotop, CO 2 -Speicher und Feinstaubfilter. Schließlich sind baumbestandene Straßen auch einfach schöner. Damit die Bäume gedeihen können, sind allerdings die Bedingungen des zukünftigen Standorts zu beachten. Die Auswahl der Bäume ist entsprechend darauf abzustimmen. Berlin verfügt über einen Bestand von über 430.000 Straßenbäumen (Stand: 31.12.2023). Die Situation der Berliner Straßenbäume ist allerdings besorgniserregend. Der zuletzt mit Stand 2020 veröffentlichte Straßenbaum-Zustandsbericht hat eine bedeutende Zustandsverschlechterung der Bäume in fast allen Berliner Bezirken nachgewiesen. Etwa 57 % der Straßenbäume weisen Kronenschäden auf. Für die Lösung des Problems sind allzu schnelle, einfache und nicht nachhaltige Lösungen stets kritisch zu hinterfragen. Die Begriffe „Zukunftsbaum“ oder „Klimabaum“ sind in diesen Zeiten der klimatischen Extreme beliebte Begriffe, um zu suggerieren, dass es Baumarten (= Gattungen, Arten, Sorten) gibt, die sämtliche Bedingungen am innerstädtischen Standort – insbesondere an dem Standort „Stadtstraße“ – aushalten können. Damit wird jedoch eine falsche Erwartung geweckt. Auch in Zukunft wird es keine Baumart geben, die den vielfältigen Herausforderungen am Straßenstandort ganz ohne Schaden begegnen kann. Vermehrte Phasen von Hitze, starker Strahlung und Trockenheit, extreme Starkregenereignisse und heftige Stürme, aber auch die sonstigen schwierigen Bedingungen am Straßenstandort wie Schädigungen durch Baumaßnahmen des Tief- und Hochbaus (Leitungen der Ver- und Entsorgung), Verdichtungen und Versiegelungen des Bodens, Ausbringung von Salz des Winterdienstes und weitere Schadstoffe wie Reifenabrieb und Hundeurin etc. lassen keinen Straßenbaum vollkommen ohne Schäden gedeihen. Den schwierigen Lebensbedingungen – insbesondere in der Innenstadt – stehen die hohen Anforderungen, die an die Straßenbäume gestellt werden, gegenüber. Diese sind beispielsweise: hohe Hitzeresistenz hohe Trockenheitsresistenz hohe Strahlungsresistenz ausreichende Frosthärte (Spätfröste!) geringe Anfälligkeit gegen Schadorganismen hohe Verkehrssicherheit, das heißt u.a. geringe (Wind-) Brüchigkeit geringe Anforderungen an die Pflege (Wasser und Nährstoffe, Pflegeschnitte) hohe Resistenz gegen Bodenverdichtung hohe Resistenz gegen Bodenversiegelung hohe Industriefestigkeit keine störenden, oberflächennahen Wurzeln keine störenden Früchte keine Dornen hohe Ästhetik (möglichst) hohe Biodiversität Insofern sind Baumarten auszuwählen, die trotz der herausfordernden Bedingungen am Straßenstandort gut gedeihen und die an sie gestellten, vielfältigen Anforderungen möglichst weitgehend erfüllen können. Dabei soll keine „Natur am Tropf“, sondern Resilienz gefördert werden. Es gilt das das Prinzip „Abhärten statt Verwöhnen“, wodurch sowohl der Pflegeaufwand, als auch die Kosten dafür langfristig gesenkt werden. Ein weiteres Ziel ist eine hohe Artenvielfalt zur Förderung der Gesundheit des Baumbestands und der Biodiversität. Dabei wird am Straßenstandort die vielfältige Kombination verschiedener Arten und Herkünfte angestrebt. Der Arbeitskreis Stadtbäume der Deutschen Gartenamtsleiterkonferenz (GALK) führt seit 1995 (Straßenbaumtest 1) bundesweit Straßenbaumtests unter besonderer Beachtung der extremen Standortbedingungen an den innerstädtischen Straßen durch. Die Straßenbaumtests sollen fundierte Aussagen über die Eignung bestimmter Baumarten und -sorten für die Verwendung als Straßenbäume auf Grundlage praktischer Erfahrungen liefern. Die Ergebnisse der Straßenbaumtests werden daher regelmäßig in die Straßenbaumliste des Arbeitskreises Stadtbäume der Bundes-GALK übernommen. Berlin beteiligt sich an dem Straßenbaumtest 2 seit dem Jahr 2015 mit derzeit 10 Baumarten und rund 80 Bäumen, die von den Bezirksämtern benannt und im Rahmen der Stadtbaumkampagne gepflanzt wurden. Weitere Informationen(Straßenbaumtest 2 der Deutschen Gartenamtsleiterkonferenz (GALK)) Trotz aller Testungen können mit der Liste aber keine „Superbäume“ / „Klimabäume“ uneingeschränkt empfohlen werden, denn derzeit ist nicht klar, wie sich die klimatischen Verhältnisse in der Zukunft weiter wandeln werden und welche Baumart darauf in welcher Weise reagieren wird. Auch treten immer neue Schadorganismen auf. Einfache Antworten hinsichtlich der Baumarten, die zukünftig noch verwendet werden können, gibt es nicht. Die Präsentationen „Arbeitskreis Städtbäume der Bundes-GALK – Straßenbaumtest 2 – Ergebnisse Berlin 2024“ erhalten Sie auf Anfrage per E-Mail. Bitte wenden Sie sich an Kerstin.Ehlebracht@SenMVKU.berlin.de . Der Arbeitskreis Stadtbäume der Deutschen Gartenamtsleiterkonferenz (GALK) hat zusammen mit dem Bund deutscher Baumschulen (BdB) die Broschüre „Zukunftsbäume für die Stadt“ herausgegeben. Diese Broschüre gibt Empfehlungen und schlägt als Entscheidungshilfe für künftige Baumpflanzungen 65 Baumarten vor. Die Broschüre macht aber eigenes Fachwissen bei der Auswahl der Baumarten nicht obsolet. Die jeweilige Baumart ist in Abhängigkeit vom einzelnen Standort auszuwählen. Ferner verweist die Broschüre der GALK und des BdB auf eine notwendige Vielfalt im Hinblick auf die Auswahl von Baumarten, um den Baumbestand zu stärken. Dabei spielen die sogenannten gebietsheimischen Arten am Straßenstandort mangels Eignung kaum noch eine Rolle. Broschüre „Zukunftsbäume für die Stadt“ Im Rahmen der Stadtbaumkampagne wurden bislang rund 240 verschiedene Baumarten an Berlins Straßen gepflanzt, deren Eignung zukünftig weiter auszuwerten ist. Die Erfahrungen, die mit den einzelnen Baumarten gemacht werden, sind ein wertvoller Fundus, um Entscheidungen über die Verwendung der Baumarten zu treffen. Die Frage stellt sich, ob hinsichtlich der Anzucht der Gehölze zukünftig neue Methoden zur Erzielung der Resilienz anzuwenden sind. Ein Ansatz wäre beispielsweise die Vermehrung von Einzelbäumen, die sich am Straßenstandort „bewährt“ – das heißt recht gesund und vital überlebt – haben. Ein „molekulares Gedächtnis“ ermöglicht manchen Bäumen die Anpassung an wiederkehrende Stresssituationen. Allerdings reagieren die Individuen innerhalb einer Art auch durchaus unterschiedlich. Möglicherweise handelt es sich um ein Zusammenspiel von individuellen Kapazitäten und speziellen Standortbedingungen. Keine Baumart ist an den extremen innerstädtischen Straßenstandort voll und ganz angepasst. Insofern bilden Stadtklima, Bodenbedingungen und Standorteinflüsse große Herausforderungen. Straßenstandorte sind durch menschlichen Einfluss geschaffene Extremstrandorte, die mit dem natürlichen Standort eines Baumes – dem Wald – nicht mehr viel gemeinsam haben. Einfache Antworten zur Baumartenwahl gibt es nicht, da der eine „Zukunftsbaum“ bzw. „Klimabaum“, der immer und überall unter den derzeitigen Klimabedingungen funktioniert, nicht existiert. Der Fokus auf wenige Arten widerspräche auch dem Ziel der biologischen Vielfalt. Insofern besteht noch ein hoher Forschungsbedarf hinsichtlich der Wahl von Baumarten, die die künftigen klimatischen Bedingungen, die jetzt noch gar nicht vollends einzuschätzen sind, aushalten. Die Ergebnisse sind jeweils an die regionalen Gegebenheiten – wie beispielsweise der Höhe des Niederschlags, als auch an die speziellen Standortbedingungen anzupassen.

Wetterstation - Zu Rheinstraße

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.Informationen zu der Wetterstation am Standort in der Zu Rheinstraße sind in diesem Datensatz zu finden.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://smartcityhub.smartandpublic.eu/datamarket/topics/overview/cf7df9c0-2df5-4ed4-b703-95245fdf0c50), [ab 13.11.2024 14 Uhr](https://smartcityhub.smartandpublic.eu/datamarket/topics/overview/97602541-9fe9-460d-88e9-7204d6be4068)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen. Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Vegetationsstruktur des Grünvolumens 2009

Die vorliegende Vegetationsstruktur des Grünvolumens basiert auf einem Zwischenergebnis aus dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014. Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Die ökologische Wirksamkeit des städtischen Grüns ist im besonderen Maße von der vorliegenden Vegetionsstruktur abhängig. So besitzt niedrige Vegetation (Rasen und Wiesen) vor allem in den Abend- und Nachtstunden eine abkühlende Wirkung, während hohe Vegetation (mittlere bis große Bäume) vorwiegend am Tag zu einer Absenkung der klimatischen Belastung beiträgt, aber zugleich die Belüftung negativ beeinträchtigen kann. Mittlere Vegetation (Sträucher, Stauden, Hecken und kleine Bäume) verfügt ebenso wie die hohe Vegetation über ein hohes Maß an Staubbindevermögen aus der Luft, während niedrige Vegetation vorwiegend Staub- und Gasteile aus den Niederschlägen bindet und aufgrund der hohen Versickerungsleistung einen großen Anteil zur Grundwasserneubildung beiträgt (siehe auch Metadaten zur Planungshinweiskarte Stadtklima). Hintergrund: Für die Grünvolumenbestimmung war es zwingend erforderlich, Vegetation von anthropogenen Objekten mit einer relevanten Höhe über dem Boden, wie Gebäuden, Laternen, Fahrzeugen etc. zu trennen. Gleichzeitig war für die Anwendung der Kronenformkorrektur (nur auf Laubbäume) und des pauschalen Aufschlages für Rasen und Ackerflächen eine weitere Differenzierung nach Vegetationstypen erforderlich. Folgende Vegetationstypen sollten voneinander getrennt werden: - Laubbaum - Nadelbaum - Sträucher - Rasen - Acker. Datengrundlage/Methodik: Grundlage der Bestimmung der Vegetationsstruktur (als Zwischenergebnis der Grünvolumenbestimmung) sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Klassifizierung der Vegetationsstruktur des Grünvolumens: - Value 0: vegetationslos => (farblos oder weiß) - Value 1: Laubbaum => (grün) - Value 2: Nadelbaum => (dunkelgrün) - Value 3: Sträucher => (braungrün) - Value 4: Rasen, Wiesen und sonstige niedrige Vegetation => (gelbgrün/hellgrün) - Value 5: Acker => (gelbgrün/hellgrün)

Klimaerlebnisbaum - Zu Rheinstraße - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Robinien stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 21 Uhr](https://opendata.smartandpublic.eu/datasets/d1f68fc3-c76d-4147-b01e-dfe490ab6331?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 13.11.2024 22 Uhr](https://opendata.smartandpublic.eu/datasets/5dc3648a-66fd-4310-accf-7256db111d5c?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

1 2 3 4 571 72 73