s/stickoxid emission/Stickoxidemission/gi
Umweltzonen sind Gebiete, in denen nur Fahrzeuge fahren dürfen, die bestimmte Abgasstandards einhalten. Die Fahrzeuge (Pkw und Lkw) müssen mit Plaketten auf der Windschutzscheibe gekennzeichnet sein. Ziel dieser Umweltzonen ist, dass die Schadstoffemissionen, die durch den Straßenverkehr verursacht werden, reduziert werden. Vorrangig geht es momentan darum, die Partikel und NOx-Emissionen zu senken. In dem Datensatz sind die von den Ländern und Kommunen gemeldeten Informationen über Umweltzonen in der nachfolgenden Übersicht für das gesamte Gebiet der Bundesrepublik zusammengestellt.
Elektrostahl (alt): In Elektrostahlwerken werden Elektrolichtbogenöfen in unterschiedlicher Ausgestaltung betrieben. Der einfache Elektrolichtbogenofen, in dem Stahlschrott durch Elektrizität geschmolzen wird, wurde ersetzt durch Elektroöfen mit Sauerstoff- und Brennstoffeinsatz. Diese neueren Öfen schmelzen nicht nur den Schrott, sondern „frischen" den Stahl, d.h. übernehmen Teilfunktionen des Konverters. Die „Eisenträger" Schrott, Roheisen oder Eisenschwamm werden in den Ofen gefüllt und Kalk und Koks als Abdeckung zugegeben. Die Wärme wird über strombelastete Elektroden erzeugt und teilweise mit zusätzlichem Brennstoff / Sauerstoff- Brennern zugeheizt. Nach dem Schmelzen der Stoffe werden durch Sauerstoffzugabe die uner-wünschten Eisenbegleiter Kohlenstoff, Silizium, Phosphor und Mangan oxidiert. Kohlen-stoff entweicht dabei gasförmig als Kohlenmonoxid, während die anderen Stoffe als Oxide in die Schlackephase überführt werden. Das flüssige Eisen wird abgegossen und verarbeitet. Es wird nur Elektrostahl zur Herstellung von Rundstählen / Baustählen betrachtet. Allokation: keine Genese der Daten: In der folgenden Übersicht sind Kennziffern aus bekannten Werken zusammengefaßt: Input Einheit WIKUE Habersatter ÊTH GEMIS Schrott kg 1098 1075 1100 974 andere Fe-Tr. kg - - - 100 Zuschlagstoffe kg 30 - 57 60 Elektroden kg 12 3 3 3 Öl / Gas kg / MJ - - -/288 5/225 Kohle kg / MJ - 28/812 - 10/290 fos. Brennst. MJ 133 - - - Sauerstoff kg 36 - 24 43 Wasser kg 120 1100 - - Strombedarf MJel 1697a 1944 1800 1440 Output Stahl, fl. kg 1000 1000 1000 1000 Staub kg 15 15 - 15 Schlacke kg 55 70 100 129 Abwasser 20 - - - Kühlwasser kg 4710 - - 1900 a bei einem Wirkungsgrad der Stromerzeugung von 33%. Der Haupteinsatzstoff besteht aus Schrott, der zu 974 kg/t E-Stahl eingesetzt wird. Zusätzliche Eisenträger sind Roheisen, Eisenschwamm und Legierungsbestandteile <Stahl 1992>. In dieser Studie werden sie als Roheisen betrachtet (#2). Es müssen ca. 60 kg Zuschlagsstoffe (Kalk) eingesetzt werden, um die Fremdstoffe des Eisens in der Schlacke aufzunehmen. Nach #1 werden ca. 5 kg Gas und Öl (225 MJ), sowie 10 kg Kohle (290 MJ) pro Tonne E-Stahl eingesetzt. Der Anteil Gas und Öl wird zusammen als 225 MJ Öl in die Berechnung eingestellt. Zusätzlich verbrauchen die Öfen zur Verbrennung 43 kg Sauerstoff. Der Bedarf an elektrischer Energie beträgt nach #2 ca. 400 kWh/t E-Stahl. Kühlwasser wird gebraucht, um wichtige Anlagenteile zu kühlen. Da keine genaueren Daten recherchiert werden konnten, wird der Kühlwasserbedarf von 1,9 m3/t E-Stahl aus der Untersuchung zu Gießereien übertragen. Funktionsweise und Kühlbedarf der Gießereiöfen sind ähnlich. Es wird im Prozeß kein Wasser eingesetzt. Die Entstaubung der Elektrolicht-bogen-öfen erfolgt trocken. An Abfall fallen 15 kg Stäube und 129 kg Schlacke pro Tonne E-Stahl an. Je nach Qualität des Schrottes können die Stäube rückgeführt werden. Ansonsten müssen die Stäube extern verwertet oder deponiert werden. Die Schlacke wird zum größten Teil im Straßenbau verwertet. Die gasförmigen Emissionen setzen sich wie folgt zusammen: Emission Einheit Quelle CO2 kg/t 39,7 stöchiometrisch CO kg/t 11,5 #3 SO2 kg/t - NOx kg/t 0,08 #3 Staub kg/t 0,3 #3 Für CO, NOx und Staub wurden die Emissionen aus der UBA-Liste der prozeßbedingten Emissionen übernommen. (ETH 1995) gibt für die NOx-Emissionen einen Wert von 0,18 kg/t und für Staub (Partikel) 0,14 kg/t an. In BUWAL 1990 werden 0,13 kg Staub/t und 1,3 kg CO/t bilanziert. Die CO2-Emissionen wurden stöchiometrisch berechnet. Für Schwefeldioxid liegen keine Werte vor. #3 stellt für den Prozeß Elektrostahl nur prozeßbedingte Emissionen auf. Emissionen die sich aus dem Einsatz von Zusatzbrennstoffen ergeben können werden nicht berücksichtigt. Die daraus resultierenden Mehremissionen sind allerdings als gering einzuschätzen. Achtung: Die Schwermetall und Dioxin/Furan-Emissionsdaten sind ein Aggregat über die gesamte vorgelagerte Prozesskette, d.h nicht nur die des Oxygenstahlwerks ! (Daten nach ÖKO 2001) Auslastung: 5000h/a Brenn-/Einsatzstoff: Recyclate gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Metalle - Eisen/Stahl
Zentralheizung für Flüssiggas (LPG) mit atmosphärischem Brenner, inkl. Hilfsstrom und Wärmeverteilung, alle Daten nach #1, Emissionsdaten aktualisiert nach #2, NOx-Emissionen wurden auf die Werte des §6 der 1.BImSchV angepasst. LPG-Daten nach #3 Auslastung: 1600h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 0,01MW Nutzungsgrad: 89% Produkt: Wärme - Heizen
Klinkerbrennen: Nach der Aufbereitung der Rohstoffe wird das Rohmehl in Drehrohröfen zu Klinker gebrannt. In den Kalzinierungsreaktionen findet die Zersetzung des Kalksteines bei ca. 900°C statt (Hantsche 1993). In der Praxis werden die Rohmaterialien bei ca. 1450°C zu Klinker gebrannt (ETH 1995). Dabei erfordert die Zersetzung des Kalksteins ca. 70 % des gesamten Wärmeaufwandes der Prozeßeinheit. Nach dem Brennen des Klinkers wird dieser abgekühlt, bevor er - wenn erwünscht - weiterverarbeitet werden kann. Mit der Abwärme können die Rohmaterialien vorgetrocknet werden (vgl. „Aufbereitung der Rohstoffe“). Ortsbezug: Die hier verwendeten Daten aus (Hantsche 1993), (ETH 1995), (WIKUE 1995a), (VDZ 1996) beziehen sich alle auf die Zementproduktion in Deutschland zu Beginn der 90er Jahre. Die Daten verschiedener Quellen zum Energiebedarf des Prozesses zeigen eine gute Übereinstimmung, so daß die Datenqualität als hinreichend gut zu bezeichnen ist. Genese der Daten - Massenbilanz: Im Brennprozeß wird dem Rohmaterial neben der eigentlichen Klinkerbildung das restliche Wasser (<2 %) und vor allen Dingen CO2 ausgetrieben. Daher müssen bezogen auf eine Tonne Klinker zwischen 1550 und 1600 kg Rohmehl in den Drehrohrofen eingebracht werden (Hantsche 1993), (WIKUE 1995a). In dieser Studie wird das arithmetische Mittel von 1575 kg/t Klinker angesetzt. Energiebedarf: Der aus der Stöchiometrie resultierende theoretische Wärmeaufwand beträgt ca. 2000 MJ/t Klinker. Für den realen Energiebedarf werden in der Literatur Werte angegeben, die gut übereinstimmen. Tab.: Energiebedarf zum Klinkerbrennnen in MJ/t Klinker. Literatur Energiebedarf [MJ/t] (Hantsche 1993) 3200 (WIKUE 1995) 3250 (VDZ 1996) 3000 GEMIS 3.0 3000 In GEMIS werden die Daten des Vereins Deutscher Zementwerke e.V. übernommen, der diese Angaben für das Jahr 1994 nach einer statistischen Erhebung noch einmal bestätigte. Demnach ergibt sich für die gesamte Bundesrepublik ein spezifischer Brennstoffenergieverbrauch von 3000 MJ/t. In den alten Bundesländern werden 2950 MJ/t Klinker eingesetzt, während in den neuen Bundesländern im Schnitt noch 3180 MJ/t benötigt werden (VDZ 1996). Der Brennstoffenergieverbrauch konnte im Jahr 1994 im Vergleich zu den Vorjahren und den anderen Literaturangaben noch einmal gesenkt werden, da die Auslastung der Drehrohrofenanlagen in diesem Jahr besonders hoch war. Für die darauffolgenden Jahre wird von einer stagnierenden Auslastung ausgegangen (VDZ 1996). Trotzdem soll der spezifische Brennstoffenergieverbrauch bis zum Jahre 2005 sowohl in den neuen als auch in den alten Bundesländern auf 2800 MJ/t gesenkt werden (VDZ 1996). Der größte Teil des Brennstoffenergieverbrauchs (ca. 96%) wird über Steinkohle, Braunkohlen, Sekundärbrennstoffen und Heizöl S gedeckt. Weitere Brennstoffe werden in GEMIS nicht berücksichtigt. Dabei sind die Anteile der einzelnen Energieträger folgendermaßen verteilt: Tab.: Relative Anteile der einzelnen Energieträger am spezifischen Brennstoffenergieverbrauch beim Klinkerbrennen (VDZ 1996). Brennstoff Rel. Anteil in Prozent Steinkohle 50 Braunkohlen (Brikett, rheinisch) 33 Sekundärbrennstoffe 11 Heizöl S (1,8 % S) 6 Prozessbedingte Luftemissionen: Da zu den prozessbedingten Luftemissionen keine repräsentativen validierten Meßwerte zur Verfügung stehen, wird auf Emissionsfaktoren des UBA zurückgegriffen. Die Luftemissionen des Prozesses setzen sich zusammen aus den Emissionen, die aus dem Einsatzmaterial resultieren und den brennstoffbedingten Emissionen. Durch die Entsäuerung des Rohstoffs Kalkstein werden beim Brand des Klinkers ca. 545 kg CO2 pro Tonne Zementklinker emittiert. Dieser Wert stimmt gut mit den Daten des UBA überein. Das UBA gibt einen Emissionsfaktor von 565 kg/t Zementklinker an (UBA 1996) Dieser Wert wird in GEMIS übernommen. Für die brennstoffbedingten Emissionen sind die Verbrennungsbedingungen sehr wichtig. Daher kann keine Verbrennungsrechnung zur Bereitstellung der Prozesswärme durchgeführt werden. Vielmehr müssen spezifische Emissionsfaktoren getrennt nach einzelnen Brennstoffen für die spezifischen Prozessbedingungen angenommen werden. Das UBA hat auch für den Prozess des Klinkerbrennens für die brennstoffspezifischen Prozessemissionen zusammengestellt (UBA 1996). Zur Berechnung der in GEMIS relevanten Emissionen werden die Emissionsfaktoren in kg Schadstoff pro TJ eingesetzte Energie für die einzelnen Brennstoffe für den oben angegebenen Brennstoffmix berechnet . Diese werden mit dem Brennstoffenergieverbrauch multipliziert. Man erhält somit die Emissionsfaktoren in kg Schadstoff pro Tonne Produkt, die in der folgenden Tabelle aufgeführt sind: Tab.: Brennstoffbedingte Emissionsfaktoren beim Klinkerbrennen bezogen auf den Brennstoffmix des VDZ von 1994 (Verändert nach UBA 1996). Schadstoff Emissionsfaktor in kg/t Klinker SO2 0,11 NOx 1,73 Staub 0 CO2 277,69 CO 0,19 CH4 0,04 NMVOC 0,04 N2O 0,01 Das UBA weist keinen Emissionsfaktor für Staub aus, obwohl dessen Emission bei der Klinkerherstellung wichtig erscheint. Hierfür werden nach Hantsche 0,3 kg/t Klinker angesetzt (Hantsche 1993). Wasserinanspruchnahme: Für das Klinkerbrennen wird weder Prozess- noch Kühlwasser benötigt. Das Abkühlen des Klinkers erfolgt durch Luftkühlung. Die abgeführte Wärme wird zur Vortrocknung der Rohmaterialien genutzt. Abwasserinhaltsstoffe: In dem betrachteten Prozess fällt kein Abwasser an. Reststoffe: Es fallen keine Reststoffe an, die nicht wieder in dem Prozess eingesetzt werden können. Aufgrund der Bilanzgrenzen werden daher keine Reststoffe bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Sonstige gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 63,5% Produkt: Baustoffe
Das Emissionsberechnungsmodell „TREMOD“ (Transport Emission Model) bildet den motorisierten Verkehr in Deutschland hinsichtlich seiner Verkehrs- und Fahrleistungen, Energieverbräuche und den zugehörigen Luftschadstoffemissionen für den Zeitraum 1960 bis 2050 ab. Es wurde vom ifeu-Institut im Auftrag des Umweltbundesamtes entwickelt und wird seit mehreren Jahren kontinuierlich fortgeschrieben. Der Bericht beschreibt die Aktualisierung und Ergänzung von TREMOD. Für alle Verkehrsträger wurden die Bestands- und Fahr- und Verkehrsleistungsdaten bis zum Jahr 2021 fortgeschrieben. Bei der Modellierung der NOx- und NO2-Emissionen wurden neueste wissenschaftliche Erkenntnisse und Messergebnisse berücksichtigt. Anschließend wurde das Trendszenario bis zum Jahr 2050 aktualisiert. Die aktuellen Berechnungsergebnisse für die Energieverbrauchs- und Schadstoffemissionen werden exemplarisch dargestellt. Veröffentlicht in Texte | 76/2024.
Umweltzonen sind Gebiete, in denen nur Fahrzeuge fahren dürfen, die bestimmte Abgasstandards einhalten. Die Fahrzeuge (Pkw und Lkw) müssen mit Plaketten auf der Windschutzscheibe gekennzeichnet sein. Ziel dieser Umweltzonen ist, dass die Schadstoffemissionen, die durch den Straßenverkehr verursacht werden, reduziert werden. Vorrangig geht es momentan darum, die Partikel und NOx-Emissionen zu senken. In dem Datensatz sind die von den Ländern und Kommunen gemeldeten Informationen über Umweltzonen in der nachfolgenden Übersicht für das gesamte Gebiet der Bundesrepublik zusammengestellt. Der Datensatz stellt die Umringe der Umweltzonen schematisch dar, ohne Ausnahmereglungen abzubilden. Detailangaben zu Ausnahmen sind über die veröffentlichten Luftreinhaltepläne sowie die örtlich zuständigen Behörden zu erlangen. Die Datenerfassung ersetzt nicht die ortsübliche Kennzeichnung durch Verkehrsbeschilderung.
Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe
Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe
Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe
Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe
Origin | Count |
---|---|
Bund | 999 |
Land | 91 |
Type | Count |
---|---|
Ereignis | 8 |
Förderprogramm | 541 |
Gesetzestext | 1 |
Kartendienst | 18 |
Text | 466 |
Umweltprüfung | 4 |
unbekannt | 46 |
License | Count |
---|---|
geschlossen | 187 |
offen | 556 |
unbekannt | 341 |
Language | Count |
---|---|
Deutsch | 1074 |
Englisch | 52 |
unbekannt | 4 |
Resource type | Count |
---|---|
Archiv | 340 |
Bild | 6 |
Datei | 363 |
Dokument | 434 |
Keine | 511 |
Multimedia | 1 |
Webdienst | 3 |
Webseite | 202 |
Topic | Count |
---|---|
Boden | 1084 |
Lebewesen & Lebensräume | 1084 |
Luft | 1084 |
Mensch & Umwelt | 1084 |
Wasser | 1084 |
Weitere | 1037 |