API src

Found 674 results.

Related terms

Dreidimensionale globale Modellrechnung der troposphaerischen Luftchemie

Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.

Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus?

Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.

Globaler Ozonhaushalt

Die globale Ozonschicht ist von zentraler Bedeutung fuer alle Lebensvorgaenge auf der Erde, da sie die lebensfeindliche Ultraviolettstrahlung der Sonne abschirmt (Sonnenbrand). In neuester Zeit kann eine Gefaehrdung dieser irdischen Ozonschicht eintreten durch den Ueberschallverkehr in der Stratosphaere und anthropogene Spurenstoffe. Es wird die Dicke der Ozonschicht gemessen und die vertikale Verteilung der Ozonschicht, diese Messparameter werden zusammen mit den Daten des Ozons und Stratosphaeretemperaturen der US-Satelliten Nimbus analysiert. Die Rolle des Ozons bei den Aenderungen des globalen Strahlungsenergiehaushaltes wird untersucht. Dies ist fuer Klimastudien von Bedeutung.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Einfluss von Jet-Front Systemen in der oberen Troposphäre auf die mesoskalige Struktur der Tropopauseninversionsschicht und Stratosphären-Troposphären Austausch (MESO-TIL)

Der vorliegende Antrag ist der HALO Mission WISE zuzuordnen. Ein besonderes Augenmerk liegt dabei auf der Bildung der Tropopauseninversionsschicht (TIL) und deren Einfluss auf Stratosphären-Troposphären Austausch (STE) auf der Mesoskala. Diesem Projekt dienen idealisierte Studien der TIL in baroklinen Lebenszyklen als Grundlage. Die Hauptziele sind dabei die Überprüfung der Ergebnisse der idealisierten Studien zur TIL Bildung genauso wie ein erweitertes Verständnis der Prozesse, die zum STE auf der Mesoskala beitragen. Dabei soll auf drei wissenschaftliche Fragestellungen genauer eingegangen werden: (1) Wie stark schwankt die TIL in ihrem Auftreten über dem Nordatlantik, vor allem im Bereich barokliner Lebenszyklen und im Bereich von STE? (2) Welche Prozesse liefern den größten Beitrag zur TIL auf der Mesoskala und welchen Einfluss hat dies auf STE? (3) Wie groß ist der Beitrag von klein-skaligen Wellen in der unteren Stratosphäre auf die TIL Bildung und die Ausdehnung der extratropischen Mischungsschicht? Eine Kombination von Methoden wird verwendet werden um diese Fragen zu beantworten. Analysedaten des EZMW werden zusammen mit Lagrangeschen Methoden benutzt, um die TIL und STE über dem Nordatlantik zu untersuchen. Der Nordatlantik ist das Gebiet, das auch während WISE untersucht werden soll. Darüber hinaus sollen für WISE hoch aufgelöste Modellsimulationen mit dem neuen numerischen Wettervorhersagemodell ICON durchgeführt werden. Dabei sollen zum einen die Beiträge diverser Prozesse auf die Bildung der TIL am Beispiel von realen Zyklonen und Antizyklonen untersucht werden. Des Weiteren sollen die Modelldaten zusammen mit Beobachtungsdaten verwendet werden um den Einfluss der TIL und von klein-skaligen Wellen auf die vertikale Ausdehnung der extratropischen Mischungsschicht zu bestimmen.

CRISTA-NF Beobachtungen von polaren Stratosphärenwolken und Spurengasmischungsverhältnissen in der arktischen Stratosphäre im Winter

Die Verteilungen vieler Spurengase wie HNO3, O3 und ClONO2 im polaren Vortex werden durch polare Stratosphärenwolken (PSCs) beeinflusst. NAT (Nitric Acid Trihydrate)-Teilchen, die ein Typ von PSC-Teilchen sind, können auf Größen anwachsen, die zu einem Absinken der Teilchen führen und somit zu einer Umlagerung von NOy. In denitrifizierten Luftmassen dauert der Ozonabbau länger an, da die Chlordeaktivierung dort verlangsamt abläuft. Wenn man die Verteilung der wichtigen Spurengase möglichst genau simulieren möchte, muss man diese Prozesse verstanden und im Modell berücksichtigt haben. Vor allem Bildung und Wachstum der NAT-Teilchen ist dabei sehr wichtig, da diese Prozesse in Modellen nur auf Basis von Messungen parametrisiert, aber bis jetzt noch nicht komplett verstanden sind. Selbst bei verbesserten Parametrisierungen treten immer noch Abweichungen zwischen Simulation und Messung (z.B. Größenverteilung der NAT-Teilchen, NOy Umlagerung) auf.Messungen des flugzeuggetragenen Infrarot-Limbsounders CRISTA-NF (CRyogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers) werden verwendet, um mehr über die relevanten Prozesse zu lernen. CRISTA-NF misst Höhenprofile der thermischen Emission verschiedener Spurengase im mittleren Infrarot. Die Messungen ermöglichen die Herleitung 2-dimensionaler Vorhänge der Mischungsverhältnisse unterschiedlicher Spurengase (z.B. HNO3, CFC-11, O3, ClONO2) und zudem die Detektion verschiedener PSCs (NAT, STS (Supercooled Ternary Solution) und Eis). Kleine NAT-Teilchen (Radius größer als 3 mym) verursachen eine spektrale Signatur, die zur Detektion verwendet wird. Neue Ergebnisse zeigen, dass es zu einem Verschub der Signatur kommen kann und dass die Stärke des Verschubs von der Größenverteilung der Teilchen abhängt. In der bestehenden Detektionsmethode wird der Verschub nicht berücksichtigt und die Methode wird verbessert werden, um Fehlinterpretationen zu reduzieren. Zudem wird die neue Methode die Herleitung von Informationen über die Größenverteilung kleiner NAT-Teilchen ermöglichen. Weiterhin soll der Strahlungseinfluss aufgrund der PSCs im Retrieval berücksichtigt werden, was die Herleitung von Spurengasmischungsverhältnissen in der Gegenwart von PSCs deutlich verbessert.Innerhalb des Projekts werden Simulationen des Chemie-und-Transport-Modells ClaMS (Chemical Lagrangian Model of the Stratosphere) verwendet werden. Vergleiche zwischen den CRISTA-NF Beobachtungen und den Modellergebnissen werden genutzt, um die wichtigen Prozesse besser zu verstehen. Detaillierte Vergleiche ermöglichen die Untersuchung verschiedener Aspekte, wie den Einfluss eines möglichen Temperaturbias oder Temperaturschwankungen auf die NAT Bildung und den Einfluss der Modellauflösung (zeitlich und räumlich). Vor allem kann man aber die Bildung von und die HNO3-Aufnahme durch NAT- und STS-Teilchen, die zur selben Zeit vorhanden sind, untersuchen sowie die Konsequenzen auf die Größenverteilungen und NOy Umlagerung.

Wechselwirkung von Schwerewellen und Madden Julian Oszillation

Die Madden-Julian Oszillation (MJO) (Madden & Julian 1971, 1972) ist der dominante Teil der intrasessionalen Variabilität der tropischen Atmosphäre. Sie äußert sich vor allem in ostwärts wandernden Gebieten tiefer Konvektion und erhöhten Niederschlages. Weiterhin beeinflusst die MJO durch dynamische Kopplung das lokale Wetter des Indischen Ozeans und der Pazifischen Inseln. Außerdem spielt die durch vertikale Kopplung vermittelte Interaktion mit anderen wiederkehrenden dynamischen Phänomenen, wie zum Beispiel der Quasizweijahresschwingung der inneren Tropen (Quasi-biennial Oscillation, QBO), eine wichtige Rolle für das Verständnis tropischer Winde. Obwohl die Datenbasis über die MJO, der tiefen tropischen Konvektion und des Niederschlag in den Tropen im Verlauf der letzten Jahrzehnte eine deutliche Verbesserung erfuhr, verbleibt die Modellierung und Simulation der MJO als ein ernstes Problem heutiger atmosphärischer Modelle. Aus diesem Grunde beschäftigt sich das hier vorgeschlagene Projekt mit wichtigen Fragestellungen bezüglich dieser Modellierungsprobleme. Dabei wird auf Methoden, welche während der Anfertigung meiner Doktorarbeit zur Modellierung konvektiver Schwerewellen entstanden, zurückgegriffen. Das Projekt gliedert sich hierbei folgendermaßen in zwei wesentliche wissenschaftliche Fragestellungen:Wie beeinflusst die MJO die Ausbreitung und Dissipation konvektiv angeregter Schwerewellen?Wie wirken diese konvektiven Schwerewellen zurück auf die MJO und deren Konvektion?Das zur Beantwortung dieser Fragen notwendige Werkzeug ist ein gekoppeltes Modell konvektiv angeregter Schwerewellen und ihrer Ausbreitung, welches ich bereits sehr erfolgreich für Studien meiner Dissertation nutzte. Zusätzlich wird die Anwendung des WRF (Weather Research and Forecasting) Modells die numerische Modellierung auf der Mesoskala unterstützen. Einen weiteren Fokus setzt das Projekt auf Impulsflussspektren der Schwerewellen und ihrer durch die MJO induzierten Variabilität. Es wird außerdem untersucht, ob diese MJO induzierte Variabilität von Satelliteninstrumenten aus beobachtet werden kann. Dies wird Einsichten in den durch flache und tiefe Konvektion emittierten Schwerewellenimpulsfluss eröffnen. Im Falle der Feedbackmechanismen wird der Schwerpunkt auf den Einfluss des Schwerewellendrag auf die sekundäre Zirkulation der MJO gelegt.

Untersuchungen des Tagesgangs verschiedener Spurengase mit Hilfe der solaren Absorptionsspektroskopie im infraroten Spektralbereich im tropischen Westpazifik (TROPAC)

Der Ozean im Westpazifik ist mit Temperaturen von ganzjährig 30°C der wärmste Ozean der Welt. Im tropischen Westpazifik ist die Lufttemperatur der Grenzschicht weltweit am höchsten und die Ozonkonzentration am niedrigsten. Aufgrund der allgemeinen Advektion der Luftmassen in der unteren und mittleren Troposphäre aus dem Osten durch die Walker-Zirkulation über den Pazifik befindet sich die Luft über dem tropischen Westpazifik für längere Zeit in einer sauberen, warmen und feuchten Umgebung. Der Abbau von reaktiven Sauerstoff- und Ozonvorläufern wie NOx findet daher länger als anderswo in den Tropen, was zu sehr niedrigen Ozonkonzentrationen führte. Dies erhöht die Lebensdauer von kurzlebigen biogenen und anthropogenen Spurengasen. Darüber hinaus begünstigen hohe Meeresoberflächentemperaturen eine starke Konvektion im tropischen Westpazifik, was zu niedrigen Ozonmischungsverhältnissen in den konvektiven Ausflussgebieten in der oberen Troposphäre führen kann. Der Warmpool im Westpazifik ist auch eine wichtige Quellregion für stratosphärische Luft. Daher fallen die Region, in der die Lebensdauer kurzlebiger Spurengase erhöht ist, und die Quellregion der stratosphärischen Luft zusammen. Somit bestimmt die Zusammensetzung der troposphärischen Atmosphäre in dieser Region in hohem Maße auch die globale stratosphärische Zusammensetzung.Ozon ist aufgrund von Rückkopplungsprozessen zwischen Temperatur, Dynamik und Ozon ein wichtiges Spurengas in der Klimaforschung. Da der Warmpool im Westpazifik die Hauptquellenregion für stratosphärische Luft ist, ist die Kenntnis von Ozon und anderen kurzlebigen Spurengasen auch wichtig, um den Transport von Spurengasen in die Stratosphäre zu verstehen.Ziel unseres Projektes ist die Messung des Tagesgangs von Ozon und anderen Spurengasen mit Hilfe der hochauflösenden solaren Absorptions-FTIR-Spektroskopie. Die Messungen liefern die Gesamtsäulendichten von bis zu 20 Spurengasen. Für einige Spurengase erlaubt die Analyse der Spektrallinienform die Ableitung der Konzentrationsprofile in bis zu etwa vier atmosphärischen Höhenschichten. Ergänzt werden die Beobachtungen durch Ozonballonsondierungen, kontinuierliche Messungen der UV-Strahlung, und Modellrechnungen mit einem Chemie-Transport-Modell. Die Messungen sind für den Zeitraum August bis Oktober 2022 geplant, die Auswertung und Interpretation von November 2022 bis Januar 2023.

PHILEAS (Untersuchung des Transport aus dem asiatischen Sommermonsun in hohe Breiten)

PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?

Aerosolpartikel in der Outflow-Region des Asiatischen Monsuns: Zusammensetzung und Bildungsprozesse

Der asiatische Monsun spielt eine wichtige Rolle beim Verständnis der chemischen und klimarelevanten Prozesse in der globalen Atmosphäre, nicht zuletzt wegen seines Einflusses auf die Aerosol- und Wolkeneigenschaften in der oberen Troposphäre und unteren Stratosphäre. Bereits seit einigen Jahren wird die sogenannte Asian Tropopause Aerosol Layer (ATAL) mit Fernerkundungsmethoden und Ballon-basierten Messungen untersucht. Es existieren allerdings nur wenige in-situ Beobachtungen innerhalb der ATAL, beziehungsweise in der Ausströmregion (Outflow) des asiatischen Monsuns in Richtung mittlere Breiten, die Informationen über die chemischen Zusammensetzung der Aerosolpartikel geben. Es wird davon ausgegangen, dass die Luftmassen im Outflow des asiatischen Monsuns Aerosolpartikel enthalten, die aufgrund von photochemischer Prozessierung und sekundärer Bildung während des Transports veränderte Eigenschaften aufweisen. Diese Prozesse haben einen Einfluss auf die Fähigkeit der Partikel zur Eisnukleation und damit wiederum auf den indirekten Klimaeffekt dieser Partikel. Dieser Antrag zielt daher auf die in-situ Untersuchung der chemischen Zusammensetzung der Aerosolpartikel im submikrometer Bereich ab. Wir schlagen vor, das Hybrid-Aerosolmassenspektrometer ERICA (ERC instrument for the chemical composition of aerosols) im Rahmen der PHILEAS Kampagne auf dem Forschungsflugzeug HALO einzusetzen. Das ERICA kombiniert zwei Typen von Aerosolmassenspektrometrie-Methoden und ermöglicht es somit, zeitgleich Einzelpartikel- und Ensemblemessungen zur chemischen Zusammensetzung durchzuführen. Zusätzlich wird die Messkapazität zum einen durch den Einbau eines Impaktors erweitert, welcher eine spätere offline-Analyse der Partikel mittels Röntgenstrahlung und Elektronenmikroskopie ermöglicht. Zum anderen wird ein neuer Messmodus zur quantitativen chemischen Analyse von Einzelpartikeln in das ERICA integriert. Dieser Datensatz, zusammen mit Spurengasmessungen und der lagrangeschen Modellierung der Luftmassenherkunft, wird somit die Untersuchung von Quellen, Bildungsprozessen sowie der photochemische Entwicklung der Aerosolpartikel während des Transports ermöglichen.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Untersuchung der Auswirkungen von Zirren in hohen Breiten auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre

Die Auswirkungen von Zirrus-Wolken auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre sind ein nur mit großen Unsicherheiten bekannter Faktor im globalen Klimawandel. Die Nukleation und das Wachstum von Eispartikeln in Zirren können die vertikale Umverteilung des wichtigsten Treibhausgases Wasserdampf (H2O) bewirken. Weiterhin sind Eispartikel in Zirren in der Lage, Salpetersäure (HNO3) und weitere Verbindungen aufzunehmen und vertikal umzuverteilen. Genaue Simulationen von Zirren und deren Auswirkungen auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre stellen eine Herausforderung für numerische Wettervorhersagemodelle und Chemie-Klima-Modelle dar. In dem vorgestellten Projekt sollen mittels Messungen des GLORIA-Spektrometers während der HALO-Mission (High Altitude and LOng range research aircraft) POLSTRACC/GW-LCYCLE/SALSA und Modell-Simulationen die Auswirkungen von Zirren auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre in hohen Breiten untersucht werden.

1 2 3 4 566 67 68