Änderungen der Verteilung von Spurenstoffen wie Wasserdampf und Ozon, sowie die Verteilung von Zirruspartikeln in der unteren Stratosphäre/oberen Troposphäre (UTLS) haben einen großen Einfluss auf den Strahlungsantrieb. Unsicherheiten in der Beschreibung von Mischungsprozessen führen zu großen Unsicherheiten der Abschätzung des Strahlungsantriebs und sind deshalb von großer Bedeutung für die Quantifizierung des Klimawandels. Deshalb ist es wichtig, physikalische und chemische Prozesse (z.B. Austauschprozesse von Luftmassen, Zirrusbildung) zu quantifizieren, die die Zusammensetzung der UTLS bestimmen. Die sogenannte 'overworld' oberhalb von Theta=380K beeinflusst unmittelbar die Zusammensetzung der extratropischen Stratosphäre im Sommer durch Luftmassen, die aus der Region der asiatischen Monsunzirkulation stammen. Brechende planetare Wellen transportieren Monsun beeinflusste Luft in höhere Breiten, wo sie zum dortigen Wasserdampf- und Spurenstoffbudget beitragen. Die untere Grenze der UTLS, die extratropische Tropopausenschicht (ExTL), wird durch schnellen und effizienten bidirektionalen (quasi-isentropen) Austausch mit der Troposphäre gekennzeichnet. Die obere Grenze der der ExTL korrespondiert mit der Lage der Tropopauseninversionsschicht (TIL), die eine Region erhöhter statischer Stabilität oberhalb der Tropopause darstellt. Der Einfluss infrarotaktiver Tracer wie Wasserdampf oder Ozon auf die Temperaturstruktur macht die TIL zu einem sensitiven Indikator für Änderungen des Wasserdampf- oder Ozongehaltes oder auch Änderungen der Tropopausen Temperatur. Diese wirkt auf den Wasserdampfgehalt, der wiederum die statische Stabilität beeinflusst. WISE untersucht den Zusammenhang zwischen Zusammensetzung und der dynamischen Struktur der UTLS innerhalb der folgenden vier Hauptthemen:- Zusammenhang zwischen TIL und Spurengasverteilung in der unteren Stratosphäre- Wellenbrechung von planetaren Wellen und Wasserdampftransport in die extratropische untere Stratosphäre - Halogenierte Substanzen und deren Effekt auf Ozon in der UTLS- Nichtsichtbare Zirruspartikel und deren Effekt auf die UTLSBei WISE werden diese Themen mit einer neuartigen Nutzlast untersucht, die 2D- und 3D-Messungen von Spurenstoffen und Temperatur, Dropsondendaten und hochaufgelöste in-situ Spurengasmessungen vereint. Eine einzigartige Kombination von Limb- und Nadirmessngen wird verwendet, um die Eigenschaften optisch dünner Zirren in der UTLS Region zu untersuchen. Hochpräzise in-situ Daten erlauben detaillierte Untersuchungen zu Mischungsprozessen mit hoher Auflösung, sowie Zeitskalen und Altersbestimmung der Luft. WISE wird im September / Oktober stattfinden, und daher unmittelbar den Einfluss des sich auflösenden Monsuns auf die extratropische UTLS vermessen. Durch die Kombination mit Lagrange'schen und prozessorientierten Modellen wird der relative Beitrag verschiedener Quellregionen als auch Transportzeitskalen und Prozesse quantifiziert.
Die Madden-Julian Oszillation (MJO) (Madden & Julian 1971, 1972) ist der dominante Teil der intrasessionalen Variabilität der tropischen Atmosphäre. Sie äußert sich vor allem in ostwärts wandernden Gebieten tiefer Konvektion und erhöhten Niederschlages. Weiterhin beeinflusst die MJO durch dynamische Kopplung das lokale Wetter des Indischen Ozeans und der Pazifischen Inseln. Außerdem spielt die durch vertikale Kopplung vermittelte Interaktion mit anderen wiederkehrenden dynamischen Phänomenen, wie zum Beispiel der Quasizweijahresschwingung der inneren Tropen (Quasi-biennial Oscillation, QBO), eine wichtige Rolle für das Verständnis tropischer Winde. Obwohl die Datenbasis über die MJO, der tiefen tropischen Konvektion und des Niederschlag in den Tropen im Verlauf der letzten Jahrzehnte eine deutliche Verbesserung erfuhr, verbleibt die Modellierung und Simulation der MJO als ein ernstes Problem heutiger atmosphärischer Modelle. Aus diesem Grunde beschäftigt sich das hier vorgeschlagene Projekt mit wichtigen Fragestellungen bezüglich dieser Modellierungsprobleme. Dabei wird auf Methoden, welche während der Anfertigung meiner Doktorarbeit zur Modellierung konvektiver Schwerewellen entstanden, zurückgegriffen. Das Projekt gliedert sich hierbei folgendermaßen in zwei wesentliche wissenschaftliche Fragestellungen:Wie beeinflusst die MJO die Ausbreitung und Dissipation konvektiv angeregter Schwerewellen?Wie wirken diese konvektiven Schwerewellen zurück auf die MJO und deren Konvektion?Das zur Beantwortung dieser Fragen notwendige Werkzeug ist ein gekoppeltes Modell konvektiv angeregter Schwerewellen und ihrer Ausbreitung, welches ich bereits sehr erfolgreich für Studien meiner Dissertation nutzte. Zusätzlich wird die Anwendung des WRF (Weather Research and Forecasting) Modells die numerische Modellierung auf der Mesoskala unterstützen. Einen weiteren Fokus setzt das Projekt auf Impulsflussspektren der Schwerewellen und ihrer durch die MJO induzierten Variabilität. Es wird außerdem untersucht, ob diese MJO induzierte Variabilität von Satelliteninstrumenten aus beobachtet werden kann. Dies wird Einsichten in den durch flache und tiefe Konvektion emittierten Schwerewellenimpulsfluss eröffnen. Im Falle der Feedbackmechanismen wird der Schwerpunkt auf den Einfluss des Schwerewellendrag auf die sekundäre Zirkulation der MJO gelegt.
Im Rahmen dieses Antrags werden neuartige hochaufgelöste Spurengasmessungen genutzt, um Mischungsprozesse auf verschiedenen Skalen zu untersuchen um:1)den Effekt der Tropopauseninversionsschicht auf Mischung und Austausch zu untersuchen 2) um den Zerfall von Filamenten zu untersuchen, die aus dem Monsumsystem stammen 3) um den Anteil von Luftmassen aus verschiedenen Quellregion zu quantifizieren, die die extratropische obere Troposphäre/ untere Stratosphäre (ExUTLS) beeinflussen. Zu diesem Zweck schlagen wir vor, der HALO Nutzlast ein neues Messinstrument hinzuzufügen. Dabei handelt es sich um ein Quantenkaskadenlaserabsorptionsspektrometer, das in der Lage ist, simultan CO und N2O mit einer Genauigkeit von 0.1 ppbv/Hz zu messen bei einer Messfrequenz von 3 Hz. Die hohe Präzision der Messungen erlaubt es, Mischungsprozesse mit beispielloser Genauigkeit zu vermessen und Mischung zwischen Luftmassen innerhalb der Stratosphäre zu identifizieren. Damit sollen die Mischungsprozesse, die beim Zerfall von monsunbeeinflussten Filamenten zu einem Spurenstoffaustauch innerhalb der Stratosphäre führen, untersucht werden. Neben den kleinskaligen Prozessen werden auch die großräumigen Verteilungen der Spurenstoffe untersucht. Hierzu sollen CLaMS Trajektorien und ein CO-basierter Budgetansatz kombiniert werden, um Luftmassenanteile aus verschiedenen Ursprungsregionen, die die Zusammensetzung der ExUTLS zur Monsunzeit bestimmen, zu quantifizieren. Dieser Ansatz soll auf die HALO Messungen bei POLSTRCC angewendet werden, um ein komplementäres Bild zur Winterjahreszeit zu erhalten und die Daten in einen jahreszeitlichen Kontext zu setzen.
Die Auswirkungen von Zirrus-Wolken auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre sind ein nur mit großen Unsicherheiten bekannter Faktor im globalen Klimawandel. Die Nukleation und das Wachstum von Eispartikeln in Zirren können die vertikale Umverteilung des wichtigsten Treibhausgases Wasserdampf (H2O) bewirken. Weiterhin sind Eispartikel in Zirren in der Lage, Salpetersäure (HNO3) und weitere Verbindungen aufzunehmen und vertikal umzuverteilen. Genaue Simulationen von Zirren und deren Auswirkungen auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre stellen eine Herausforderung für numerische Wettervorhersagemodelle und Chemie-Klima-Modelle dar. In dem vorgestellten Projekt sollen mittels Messungen des GLORIA-Spektrometers während der HALO-Mission (High Altitude and LOng range research aircraft) POLSTRACC/GW-LCYCLE/SALSA und Modell-Simulationen die Auswirkungen von Zirren auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre in hohen Breiten untersucht werden.
The N2O emissions were estimated by calculating the change in total N2O flux. The total N2O global flux (TgN/yr) was calculated by clubbing the new SPICE core N2O data (Azharuddin et al, 2023) with the existing data from EPICA Dome C (EDC), Dronning Maud Land (EDML) (Flückiger et al., 2002; Schilt et al., 2010), Talos Dome Ice (TALDICE), North Greenland Ice Core Project (NGRIP) (Fischer et al., 2019), Law Dome (Rubino et al., 2019) and Styx and NEEM (Ryu et al., 2020) ice cores using a two-box model. The model assumed the stratosphere and troposphere as individual boxes where the stratospheric N2O destruction and troposphere-stratosphere N2O exchange were well constrained.
Zur Schädigung der Ozonschicht in der Stratosphäre tragen eine Vielzahl an halogenierten chemischen Substanzen bei . Dazu gehören u. a. Fluorchlorkohlenwasserstoffe (FCKW), Halone, Tetrachlorkohlenstoff, Methylbromid und weitere teilhalogenierte Kohlenwasserstoffe. Die Verordnung (EG) Nr. 1005/2009 über Stoffe, die zum Abbau der Ozonschicht führen und die nationale Chemikalien-Ozonschichtverordnung regeln die nur noch in Ausnahmefällen genehmigte Produktion sowie das Inverkehrbringen dieser Stoffe. Erhöhte technische Anforderungen an Einrichtungen, die diese Stoffe enthalten sowie spezielles Fachwissen und Fertigkeiten des Personals im Umgang mit solchen Stoffen sind weitere Maßnahmen, zum Schutz von Mensch und Umwelt. Entsprechende Dokumente können aus dem Abschnitt "Formulare/Anträge/Leitfäden" entnommen werden. Aktualisierungsdatum 11.02.2025 Nutzungsbedingungen externer Webseiten - ECHA - EUR-Lex - BAuA - Bundesumweltministerium
In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.
Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.
El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
| Origin | Count |
|---|---|
| Bund | 659 |
| Land | 11 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 641 |
| Text | 12 |
| unbekannt | 18 |
| License | Count |
|---|---|
| geschlossen | 26 |
| offen | 647 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 531 |
| Englisch | 225 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 3 |
| Dokument | 5 |
| Keine | 570 |
| Unbekannt | 1 |
| Webseite | 102 |
| Topic | Count |
|---|---|
| Boden | 487 |
| Lebewesen und Lebensräume | 495 |
| Luft | 674 |
| Mensch und Umwelt | 673 |
| Wasser | 474 |
| Weitere | 654 |