API src

Found 674 results.

Related terms

Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre

In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.

Aerosole aus dem asiatischen Monsun in der oberen Troposphäre: Quellen, Alterung, Auswirkungen

Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Ableitung von Altersspektren und Halogenbudgets der UTLS aus GhOST-MS Messungen während TACTS, SALSA, POLSTRACC und WISE

Wir schlagen vor, den von uns entwickelten Gaschromatographen GhOST-MS (Gas chromatograph for the Observation of tracers - coupled with a mass spectrometer) während der HALO Kampagne WISE einzusetzen um eine breite Palette von Tracern mit unterschiedlichen Lebenszeiten (von fast unendlich wie SF6 bis wenige Wochen, wie CHBr3) in der unteren und untersten Stratosphäre zu messen. Diese Messungen sollen gemeinsam mit den aus den Kampagnen TACTS, SALSA und POLSTRACC vorhandenen Beobachtungen ausgewertet werden. Bei der Auswertung wollen wir uns auf zwei Hauptaspekte konzentrieren. Dies sind die Ableitung von Transit-Zeit Verteilungen (Altersspektren) und die Bestimmung des Halogenbudgets der unteren Stratosphäre, insbesondre des Brombudgets. Die Auswertungen sollen für die verschiedenen Jahreszeiten der Kampagnen und auch im Hinblick auf unterschiedliche meteorologische Situation durchgeführt werden. Zur Ableitung der Altersspektren soll eine neue Methode entwickelt werden, die es erlaubt auch sogenannte bimodale Altersspektren abzuleiten, was eine bessere Beschreibung der Transportzeitverteilung der unteren und untersten Stratosphäre ermöglichen wird. Hierzu ist eine enge Zusammenarbeit mit dem Forschungszentrum Jülich und den Arbeiten zum CLaMS Modell geplant. Als Grundlage für die Methode zur Ableitung der Altersspektren soll der von Ehhalt et al. (2007) veröffentliche Ansatz verwendet werden. Beim Halogenbudget sollen unsere Messungen vor allem verwendet werden um abzuleiten, wieviel anorganisches Brom und Chlor aus kurzlebigen organischen Quellgasen in der unteren Stratosphäre vorhanden ist und dort zum Ozonabbau beitragen kann. Diese Daten sollen mit quasi-simultanen Messungen anorganischer Halogen-Komponenten der Universität Heidelberg kombiniert werden um insbesondre ein komplettes Brombudget der untersten Stratosphäre aufzustellen.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Die Bedeutung der Dynamik der MLT in mittleren und hohen Breiten auf das ionosphärische/thermosphärische Wetter (DYNAMITE)

Das ionosphärische/thermosphärische (I/T) System unterliegt zum einen solaren und magnetosphärischen Einflüssen und wird ebenfalls von zwar kleinskaligen, aber persistenten und darum bedeutenden Prozessen aus der mittleren Atmosphäre angetrieben. Gerade der zuletzt genannte Einfluss wird seit Jahren vermutet, es konnte jedoch bis jetzt kein klarer Beleg für die Kopplung gefunden werden. Alle Anregungen aus der mittleren Atmosphäre müssen sich durch die Mesosphäre und untere Thermosphäre (MLT) ausbreiten. Dabei wechselwirken die Wellen untereinander und koppeln an die I/T. Diese Kopplung kann (a) durch die direkte Ausbreitung von primären (oder sekundären) Wellen, und /oder (b) indirekt durch den E-Region-Dynamo erfolgen. Deshalb ist die MLT generell von Bedeutung für die dynamische Anregung der I/T, in mittleren und hohen Breiten tritt sie aber besonders hervor: (1) auf diesen Breiten wurden bislang wenige Untersuchungen des I/T Systems (z.B. der Gezeiten) durchgeführt, was auf die unzureichende Auflösung der meisten Satelliten zurückzuführen ist, und (2) aktuelle Studien mit globalen gekoppelten Atmosphären/Ionosphären Simulationen zeigen, dass gerade bei diesen Breiten die solaren und lunaren Gezeiten, die für viele elektrodynamische Effekte in niedrigen Breiten verantwortlich sind, besonders große Amplituden während stratosphärischer Erwärmungen (SSW) erreichen. Wir beantragen, die einzigartigen Radars und Lidars des IAP in mittleren und hohen Breiten zu nutzen, um den Grundstrom, die Wellen und deren Wechselwirkungen in der MLT zu charakterisieren. Die lokalen Radarwindbeobachtungen erfolgen kontinuierlich in einem Höhenbereich von 70 -100 km und können durch Lidarmessungen zu niedrigeren Höhen erweitert werden. Dies ermöglicht die Untersuchung der vertikalen Ausbreitung von Wellen im Wind und der Temperatur. Diese Studien werden zusätzlich durch Satellitendaten und Re-Analyse komplementiert, um sowohl regional als auch global den Antrieb durch die mittlere Atmosphäre zu erfassen. Die direkte Kopplung wird durch Vergleiche der saisonalen und jährlichen Gezeiten über den Radaren mit den thermosphärischen Daten der Satelliten aus den Überflügen mit polaren Orbits untersucht. Der Einfluss des E-Region-Dynamos wird mit Hilfe von Simulationen gekoppelter Atmosphären/Ionosphären-Modellen analysiert und beinhaltet die Anregung der lunaren Gezeit in Zeiträumen mit und ohne SSW. Die Modelle werden mit bodengebunden Beobachtungen und satellitengestützten ionosphärischen Daten verglichen und validiert. Neben vielen offenen Fragen zur Kopplung der MLT mit dem I/T-System, erwarten wir insbesondere Ergebnisse zu folgenden Fragen: (a) Wie wirkt sich die beobachtete Kurzzeitvariabilität der MLT auf Wellen und dem Grundstrom in Bezug zum I/T Wetter aus?, (b) Was sind die Charakteristiken der solaren und lunaren Gezeiten für verschiedene Strukturen des polaren Wirbels während SSW und welche Auswirkungen entsprechen diesen im I/T-System?

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt D01: Großräumiger dynamischer Einfluss auf regionale arktische Klimaänderungen

Die Wechselwirkung zwischen der variablen großräumigen Zirkulation und arktischen regionalen Klimamustern werden untersucht. Wir werden den Grad der arktischen Verstärkung auf regionaler Skala in Rückkopplung mit großskaliger Dynamik und deren vergangenen und vorhergesagten Änderungen diagnostizieren. Die zentrale Frage ist zu welchem Grad die regionalen arktischen Klimaänderungen und arktische Verstärkung durch Änderungen in großräumigen horizontalen Wärmeflüssen, planetaren Wellenströmungen (insbesondere während plötzlicher stratosphärischer Erwärmungen), sowie durch allgemeine troposphärische und stratosphärische Zirkulationsmustern beeinflusst werden. Ausgedrückt wird diese in Form von der Variabilität der nordhemisphärischen Zirkulation, wie z. B. der Nordatlantischen Oszillation und der nördlichen jährlichen Mode.

Millimeterwellen-spektroskopische Untersuchungen der Strato- und Mesosphaere

Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.

Holocene total nitrous oxide flux based on the composite nitrous oxide concentration data

The N2O emissions were estimated by calculating the change in total N2O flux. The total N2O global flux (TgN/yr) was calculated by clubbing the new SPICE core N2O data (Azharuddin et al, 2023) with the existing data from EPICA Dome C (EDC), Dronning Maud Land (EDML) (Flückiger et al., 2002; Schilt et al., 2010), Talos Dome Ice (TALDICE), North Greenland Ice Core Project (NGRIP) (Fischer et al., 2019), Law Dome (Rubino et al., 2019) and Styx and NEEM (Ryu et al., 2020) ice cores using a two-box model. The model assumed the stratosphere and troposphere as individual boxes where the stratospheric N2O destruction and troposphere-stratosphere N2O exchange were well constrained.

Dreidimensionale globale Modellrechnung der troposphaerischen Luftchemie

Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.

Von El Nino zu Super - El Nino: Wie wird das Wetter beeinflusst?

El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.

Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre

Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.

1 2 3 4 566 67 68