El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.
Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.
Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.
Im Rahmen des Projektes werden flugzeuggetragene Untersuchungen von Ferntransport und Austauschprozessen an der sogenannten Tropopause durchgeführt, die die Grenzfläche zwischen der turbulenten Troposphäre und der stabil geschichteten Stratosphäre bildet. Die Region spielt eine zentrale Rolle für die Strahlungsbilanz der Atmosphäre, sodass Änderungen der chemischen Zusammensetzung sich direkt auf die Oberflächentemperatur auswirken können. Die flugzeuggetragenen Messungen in der arktischen Tropopause im Winter haben zum Ziel, speziell die Rolle von gebirgsinduzierten Schwerewellen für einen Spurenstoffaustausch zu untersuchen und die Zeitskalen und Effizienz dieser Prozesse zu bestimmen. Hierzu werden mit hoher zeitlicher Auflösung geeignete Marker für den Transport (CO, N2O) gemessen. Insbesondere N2O eignet sich hervorragend zur Untersuchung dieser dynamischen Vorgänge, da es in der Troposphäre chemisch inert und fast homogen verteilt ist. Auf Grund dieser Tatsache und des stratosphärischen Vertikalgradientes eignet es sich damit hervorragend, die dynamische Prozesse und Wellenausbreitung innerhalb der Stratosphäre zu untersuchen. Jedoch ist der N2O Gradient an der Tropopause nur schwach ausgeprägt, was eine hohe Messpräzision erfordert. Das Institut für Atmosphärenphysik der Universität Mainz verfügt seit Sommer 2013 über eine flugfähige Messinstrumentierung, die die notwendige Präzision des N2O Nachweises erreicht. Mit dieser Technik sollen im Rahmen einer Messkampagne des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit dem Messflugzeug Falcon im Januar 2016 in Kiruna / Nordschweden Untersuchungen im Bereich sogenannter Schwerewellen durchgeführt werden, um:1) den Effekt der Wellen auf die Spurengasverteilungen nachzuweisen und turbulente Transportprozesse mit nie dagewesener zeitlicher und räumlicher Auflösung zu vermessen 2) die relevanten Zeitskalen und Wellenlängen für Transport und Mischung zu bestimmen3) Flüsse durch die Tropopause nachzuweisen und zu bestimmen4) die atmosphärischen Prozesse, die zur welleninduzierten Entstehung von Turbulenz und Mischung führen, zu bestimmen Ein in-situ Nachweis von Mischung und Turbulenz war in dieser Form mit N2O und CO Korrelationen bisher nicht möglich und ist mit der erreichten Zeitauflösung und Präzision momentan weltweit einzigartig. Die Kombination mit den Wind- und Turbulenzmessugen der Falcon erlauben es, Austauschflüsse zu quantifizieren und die relevanten Wellenlängen des Spurenstofftransports zu identifizieren. Vergleiche mit dem EULAG Modell erlauben es, die für die Entstehung von welleninduzierter Turbulenz und Mischung relevanten atmosphärischen Bedingungen zu identifizieren.
The N2O emissions were estimated by calculating the change in total N2O flux. The total N2O global flux (TgN/yr) was calculated by clubbing the new SPICE core N2O data (Azharuddin et al, 2023) with the existing data from EPICA Dome C (EDC), Dronning Maud Land (EDML) (Flückiger et al., 2002; Schilt et al., 2010), Talos Dome Ice (TALDICE), North Greenland Ice Core Project (NGRIP) (Fischer et al., 2019), Law Dome (Rubino et al., 2019) and Styx and NEEM (Ryu et al., 2020) ice cores using a two-box model. The model assumed the stratosphere and troposphere as individual boxes where the stratospheric N2O destruction and troposphere-stratosphere N2O exchange were well constrained.
SRM soll die globale Erwärmung durch die Erhöhung der Albedo der Erde maskieren, zum Beispiel durch das Einbringen von Aerosolen in die Stratosphäre. Dies würde das gesamte Klimasystem verändern und damit weitreichende Auswirkungen auf alle Lebensbereiche haben. Die Risiken für Geopolitik, Klimaschutz , Ökosysteme, Gerechtigkeit, Ernährungssicherheit und Wasserverfügbarkeit werden in dieser Infografik dargestellt. Veröffentlicht in Poster.
In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.
Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
| Origin | Count |
|---|---|
| Bund | 659 |
| Land | 11 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 641 |
| Text | 12 |
| unbekannt | 18 |
| License | Count |
|---|---|
| geschlossen | 26 |
| offen | 647 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 531 |
| Englisch | 225 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 3 |
| Dokument | 5 |
| Keine | 570 |
| Unbekannt | 1 |
| Webseite | 102 |
| Topic | Count |
|---|---|
| Boden | 488 |
| Lebewesen und Lebensräume | 496 |
| Luft | 674 |
| Mensch und Umwelt | 673 |
| Wasser | 474 |
| Weitere | 654 |