API src

Found 673 results.

Related terms

Spektroskopie von atmosphaerischen Spurengasen

Es werden spektroskopische und laserchemische Untersuchungen an umweltbedeutsamen Substanzen, die z.B. als atmosphaerische Spurengase vorkommen, durchgefuehrt. Stoffe: z.B. Stickoxide, fluorierte und/oder chlorierte Kohlenwasserstoffe, Ozon u.a.

Millimeterwellen-spektroskopische Untersuchungen der Strato- und Mesosphaere

Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.

Holocene total nitrous oxide flux based on the composite nitrous oxide concentration data

The N2O emissions were estimated by calculating the change in total N2O flux. The total N2O global flux (TgN/yr) was calculated by clubbing the new SPICE core N2O data (Azharuddin et al, 2023) with the existing data from EPICA Dome C (EDC), Dronning Maud Land (EDML) (Flückiger et al., 2002; Schilt et al., 2010), Talos Dome Ice (TALDICE), North Greenland Ice Core Project (NGRIP) (Fischer et al., 2019), Law Dome (Rubino et al., 2019) and Styx and NEEM (Ryu et al., 2020) ice cores using a two-box model. The model assumed the stratosphere and troposphere as individual boxes where the stratospheric N2O destruction and troposphere-stratosphere N2O exchange were well constrained.

Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre

In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.

Dreidimensionale globale Modellrechnung der troposphaerischen Luftchemie

Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.

Von El Nino zu Super - El Nino: Wie wird das Wetter beeinflusst?

El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.

Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre

Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.

Ableitung von Statistiken höherer Ordnung aus Winddaten der unteren und mittleren Atmosphäre (HONDA)

Nichtlineare, stochastische und dissipative geophysikalische Strömungen in Atmosphäre und Ozean sind Teil der Turbulenztheorie. Diese beeinflussen die Dynamik im Bereich von Zentimetern bis zu mehreren hundert Metern sowie die meso- und synoptischen Skalen. Ein Beispiel hierfür ist das Powerspektrum von mesoskaligen horizontalen Winden, das sich statistisch ähnlich wie Meterskalen verhält und mit den Vorhersagen der klassischen isotropen 3D Turbulenz übereinstimmt, wie sie in der Arbeit von Nastrom und Gage von 1984 gefunden wurde. Diese Erkenntnis machte neue Turbulenztheorien nötig, die eine Alternative zur klassischen Erklärung der Schwerewellen bieten könnten, um die Physik hinter der mesoskaligen Dynamik in geophysikalischen Strömungen zu verstehen, wie etwa die Theorie der stratifizierten (geschichteten) Turbulenz (ST). Ein leistungsfähiges Untersuchungsinstrument der ST-Theorie ist die Analyse von Statistikdaten höherer Ordnung von Zustandsvariablen, die das mittlere Strömungsverhalten beschreiben. Dies gilt insbesondere für die Strukturfunktion (SF), die Messungen der gleichen Parameter zu verschiedenen Zeitpunkten und an verschiedenen Orten auf einen einzigen Wert, durch die Schätzung von Ensemble-Mittelwerten, synthetisiert. Eine wesentliche Einschränkung bei der Untersuchung der mesoskaligen Dynamik der Winde durch die Abschätzung von SFs hoher Ordnung für verschiedene atmosphärische Höhen ist jedoch der Mangel an geeigneten Messmöglichkeiten, die die horizontalen Mesoskalen mit ausreichend hoher Auflösung und zeitkontinuierlich erfassen können. Im Bereich der Mesosphäre und der unteren Thermosphäre (MLT) haben multistatische Meteorradarsysteme (SMRs) kürzlich bewiesen, dass sie diese Anforderungen erfüllen. Im Rahmen dieses Projekts werden zwei Hauptthemen verfolgt. Das erste ist die umfassende Analyse und Charakterisierung von SFs zweiter Ordnung der horizontalen mesoskaligen Winde aus multistatischen SMRs Beobachtungen in der MLT-Region. Wir wollen die Gültigkeit der Eigenschaft der horizontalen Isotropie beurteilen und ihre Auswirkungen auf die Dynamik von Rotations- und Divergenzmoden bewerten. Für diese Aufgaben stehen Messungen in mittleren und hohen Breitengraden zur Verfügung. Das zweite Hauptthema ist die Anwendung von Wind-SFs höherer Ordnung, die über die zweite Ordnung hinausgehen, unter Verwendung von MST-Radarwinddaten an einem einzelnen Standort. Die Anwendung der Taylor-Approximation Methode wird die Untersuchung der räumlichen Verschiebungen erleichtern, die aus zeitlichen Verzögerungen bestimmt werden. Die Methode wird anhand von Winden in der oberen Troposphäre und der unteren Stratosphäre implementiert und dann auf die mesosphärischen Winde ausgedehnt. Die Ergebnisse dieses Projekts werden Erkenntnisse über die Unterschiede und Gemeinsamkeiten im statistischen Verhalten der mesoskaligen Winde in verschiedenen atmosphärischen Höhen liefern.

Bestimmung von sehr geringen Konzentrationen an HCl in Troposphaere und Stratosphaere

Aus Untersuchungen einer amerikanischen Arbeitsgruppe geht hervor, dass Fluorchlorkohlenwasserstoffe die die Erde umgebende Ozonschicht abbauen. Ueber das Mass dieses Abbaus lassen sich keine exakten Angaben machen, da zu viele Konzentrationen beteiligter Reaktanden und Gleichgewichts bzw. Geschwindigkeitskonstanten nur ungenuegend bekannt sind. Eine sehr grosse Bedeutung kommt bei den Berechnungen der HCl-Konzentration in der Troposphaere und Stratospaere zu. Das analytische Problem HCl-Konzentrationen, die kleiner als 0,01 ppbv sind, in der Troposphaere zu bestimmen, laesst sich nur durch neue Methoden loesen. Zur Zeit sind wir deshalb mit der Ausarbeitung von zwei Methoden beschaeftigt. Bei der ersten Methode wird zunaechst traegerfreies CrO3 durch Kernreaktionen hergestellt. Anschliessend erfolgt mit dem zu bestimmenden HCl eine Umsetzung und das gebildete CrO2Cl2 wird verfluechtigt und durch Bestimmung der Aktivitaet eine HCl-Bestimmung durchgefuehrt. Bei dem zweiten Verfahren wird die Selektivitaet eines EC-Detektors fuer bestimmte Substanzen ausgenutzt. HCl wird entweder mit halogenierten Epoxiden umgesetzt oder perfluorierte organische Verbindungen werden gespalten. Die entstehenden Verbindungen werden gaschromatographisch abgetrennt und mit hoher Nachweisempfindlichkeit mit einem EC-Detektor nachgewiesen.

Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus?

Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.

1 2 3 4 566 67 68