API src

Found 674 results.

Related terms

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

MiKlip FAST-O3: Fast stratospheric ozone chemistry for global climate models

In its first phase, MiKlip has made important research contributions and has developed an internationally competitive decadal climate prediction system. Building on these results, the overarching goal for MiKlip II is to establish and improve the decadal climate prediction system that eventually can be transferred to the German meteorological service DWD for operational use. MiKlip II is funded by the German Ministry for Education and Research (BMBF) with about 13 Mio. € for three years of collaborative research and a fourth year focusing on the operational implementation of the prediction system. MiKlip II involves 16 national partners from universities, research institutions and federal agencies.

Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Stratosphärischer Ozonverlust im Sommer in mittleren Breiten - ein potentielles Risiko von Climate-Engineering? (CE-O3)

In jüngster Zeit wurde ein neuer Mechanismus zum Ozonabbau über besiedelten Gebieten in der wissenschaftlichen Gemeinschaft diskutiert, der vor einer zunehmenden Gefahr von niedrigem Ozon im Sommer in mittleren Breiten in der unteren Stratosphäre warnt. Der Ozonabbau soll durch erhöhte Mengen an Wasserdampf verursacht werden, die konvektiv in die Stratosphäre injiziert werden und zu durch Chlor bedingtem katalytischen Ozonverlust führen soll durch heterogene Reaktionen an binären Sulfat-Wasser-Aerosolen (H2SO4/H2O). Diese heterogenen Reaktionen werden durch erhöhte Mengen an Wasserdampf und niedrige Temperaturen beschleunigt. Vorausgesetzt, dass die Intensität und die Frequenz des konvektiv injizierten Wasserdampfes durch den anthropogenen Klimawandel in den nächsten Jahrzehnten ansteigen, ist mit einer Erhöhung der ultravioletten Strahlung (UV) auf der Erdoberfläche über besiedelten Gebieten zu rechnen. Die Details dieses neuen Ozonverlust-Mechanismus sind jedoch noch unklar, so dass eine genaue Quantifizierung des Ozonverlustes und seiner Sensitivität auf stratosphärischen Schwefel und Wasserdampf noch nicht möglich war. Ferner wurde im Rahmen von Climate-Engineering-Methoden, die Injektion von Sulfat-Aerosol in die Stratosphäre vorgeschlagen, um die globale Erderwärmung abzuschwächen. Dies könnte zusätzlich den Ozonabbau in der unteren Stratosphäre in mittleren Breiten verstärken. Motiviert durch diese Wissenslücken in unserem gegenwärtigen Verständnis von Ozonverlustprozessen in mittleren Breiten in der unter Stratosphäre, schlagen wir im Rahmen des DFG Schwerpunktprogramms 'Climate Engineering' ein Projekt vor, dass unter Bedingungen mit sowohl erhöhtem Wasserdampf als auch erhöhtem Sulfat-Aerosol den Ozonverlust analysiert. Unser Projekt basiert auf verschiedenen Simulationen mit dem drei-dimensionalen Chemie-Transport-Modell CLaMS mit dem Ziel die Details dieses neuen Ozonverlust-Mechanismus zu verstehen und zu quantifizieren. Ferner soll der mögliche Ozonverlustes unter Klima-Engineering-Bedingungen zuverlässig simulieren werden. Ein Algorithmus, der die Abhängigkeit des Ozonverlustes in mittleren Breiten von erhöhtem stratosphärischem Schwefel beschreibt, wird der Klima-Engineering-Community als Basis für weitere ökonomische Analysen zur Verfügung gestellt. Unsere Ergebnisse werden helfen zukünftige Entscheidungen über Klima-Engineering zu bewerten, um mögliche Risiken und Kosten für die Gesellschaft zu minimieren.

Mesures de O3, NO2, NO3 et d'aerosols (FRA)

Mise au point d'une nacelle stratospherique automatique qui analyse le rayonnement des etoiles a 40 km d'altitude. Les spectres stellaires sont utilises, pour detecter et mesurer les variations de O3, NO2, NO3 et divers aerosols. La nacelle est aussi equipee pour permettre les mesures de rayonnement solaire et detecter ses faibles variations. L'equipement stratospherique est stabilise et permet des observations, de l'uv a l'ir avec une grande precision de pointage. (FRA)

Benchmark-Klimatologien mittels Radiookkultation

Genaue und konsistente Langzeit-Daten sind nötig, um Klimavariabilität und Klimawandel detektieren, verstehen, und zuordnen zu können. Unser Wissen über Veränderungen in der freien Atmosphäre ist immer noch begrenzt, da solche Daten bis jetzt nicht in ausreichender Qualität zur Verfügung stehen. Eine neue Datenquelle, mittels der man einige Probleme von etablierten Methoden überwinden kann, ist die Radiookkultations-Methode (RO). Mit ihr ist es im Prinzip möglich, eine absolute Referenz ('Benchmark') für die obere Troposphäre und untere Stratosphäre (engl. UTLS) zu erstellen, da die Daten auf einer Zeitmessung basieren, und damit an die internationale Definition der Sekunde gebunden sind. Tatsächlich konnten wir in früheren Arbeiten zeigen, dass RO Klimatologen von unterschiedlichen Satelliten erstaunlich gut übereinstimmen (besser als 0.1 K). Der Wert von RO Daten für die Klima-Beobachtung wird zunehmend erkannt, es existieren aber auch Bedenken, dass es systematische Fehler geben könnte, die Daten von unterschiedlichen Satelliten gemein sind. Wir haben eine Liste solcher möglicher systematischen Fehler zusammengestellt, und werden diese genau analysieren. Das wird zu einem besseren Verständnis dieser (kleinen) Restfehler führen, und es erlauben, sie zu vermeiden oder zu entfernen, oder aber, sie genau zu charakterisieren, falls sie unvermeidbar sind. Wir werden diese Erkenntnisse nützen, um die Methode zur Gewinnung von RO Daten zu verfeinern, und damit RO Klimatologien der Parameter Brechungswinkel, Refraktivität, Dichte, Druck, Geopotentielle Höhe und Temperatur in der UTLS, mit bisher unerreichter Genauigkeit und Konsistenz zu erstellen. Dank ihrer hohen Qualität und einer genauen Fehler-Charakterisierung darf man erwarten, dass diese Daten als absolute Referenz (Benchmark) für globale Klimatologien der UTLS dienen können. Durch die Kombination aus hoher Genauigkeit und guter vertikaler Auflösung eignen sich die Daten auch besonders gut für die Beobachtung von Klimavariabilität und Klimawandel in der UTLS, wie z. B. Änderungen der Tropopausenhöhe, Änderungen der Übergangshöhe zwischen troposphärischer Erwärmung und stratosphärischer Abkühlung, oder Temperaturänderungen, die nach einem größeren Vulkanausbruch zu erwarten sind. Das verbesserte Verständnis der systematischen Fehler wird auch im Bereich der numerischen Wettervorhersage nützlich sein, wo RO Daten jetzt schon mit Erfolg assimiliert werden. usw.

Atmosphaerischer Ozongehalt

In Arosa (Lichtklimatisches Observatorium) wird die laengste Gesamtozonreihe der Welt (seit 1926) fortgefuehrt. Parallelmessung mit 2 Instrumenten sowie Verwendung einer statistischen Methode zur Ueberwachung der Instrumentenstabilitaet. Seit 1956 auch Messung der vertikalen Ozonverteilung mit der indirekten sog. Umkehrmethode (bis 45 km Hoehe). Beide Reihen sind wichtig im Zusammenhang mit der moeglichen Veraenderung der stratosphaerischen Ozonschicht und deren moeglichen Folgen fuer das Weltklima. In Zusammenarbeit mit dem Lab. f. Atmosphaerenphysik werden in Payerne seit 1968 (vorher 2 Jahre in Thalwil) Sondierungen (elektrochem. Sonde) dreimal woechentlich durchgefuehrt. Mit ihrer gegenueber der indirekten Umkehrmethode verbesserten vertikalen Aufloesung geben sie Einblick in den Zusammenhang zwischen stratosphaerischer Zirkulation und Ozonverteilung und sind ebenfalls fuer Trenduntersuchungen von Bedeutung. 1980 bis 1984 hat ein Doktorand Satelliten-Ozondaten (Nimbus 7, LIMS-Experiment) zur Erklaerung der Transportvorgaenge benuetzt, die im Januar 1979 zu einem extremen Ozonmaximum in 30 km Niveau gefuehrt hatten.

Holocene total nitrous oxide flux based on the composite nitrous oxide concentration data

The N2O emissions were estimated by calculating the change in total N2O flux. The total N2O global flux (TgN/yr) was calculated by clubbing the new SPICE core N2O data (Azharuddin et al, 2023) with the existing data from EPICA Dome C (EDC), Dronning Maud Land (EDML) (Flückiger et al., 2002; Schilt et al., 2010), Talos Dome Ice (TALDICE), North Greenland Ice Core Project (NGRIP) (Fischer et al., 2019), Law Dome (Rubino et al., 2019) and Styx and NEEM (Ryu et al., 2020) ice cores using a two-box model. The model assumed the stratosphere and troposphere as individual boxes where the stratospheric N2O destruction and troposphere-stratosphere N2O exchange were well constrained.

Ozonschichtschädigende Stoffe Wissenswertes

Zur Schädigung der Ozonschicht in der Stratosphäre tragen eine Vielzahl an halogenierten chemischen Substanzen bei . Dazu gehören u. a. Fluorchlorkohlenwasserstoffe (FCKW), Halone, Tetrachlorkohlenstoff, Methylbromid und weitere teilhalogenierte Kohlenwasserstoffe. Die Verordnung (EG) Nr. 1005/2009 über Stoffe, die zum Abbau der Ozonschicht führen und die nationale Chemikalien-Ozonschichtverordnung regeln die nur noch in Ausnahmefällen genehmigte Produktion sowie das Inverkehrbringen dieser Stoffe. Erhöhte technische Anforderungen an Einrichtungen, die diese Stoffe enthalten sowie spezielles Fachwissen und Fertigkeiten des Personals im Umgang mit solchen Stoffen sind weitere Maßnahmen, zum Schutz von Mensch und Umwelt. Entsprechende Dokumente können aus dem Abschnitt "Formulare/Anträge/Leitfäden" entnommen werden. Aktualisierungsdatum 11.02.2025 Nutzungsbedingungen externer Webseiten - ECHA - EUR-Lex - BAuA - Bundesumweltministerium

Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre

In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.

1 2 3 4 566 67 68