Die Verteilungen vieler Spurengase wie HNO3, O3 und ClONO2 im polaren Vortex werden durch polare Stratosphärenwolken (PSCs) beeinflusst. NAT (Nitric Acid Trihydrate)-Teilchen, die ein Typ von PSC-Teilchen sind, können auf Größen anwachsen, die zu einem Absinken der Teilchen führen und somit zu einer Umlagerung von NOy. In denitrifizierten Luftmassen dauert der Ozonabbau länger an, da die Chlordeaktivierung dort verlangsamt abläuft. Wenn man die Verteilung der wichtigen Spurengase möglichst genau simulieren möchte, muss man diese Prozesse verstanden und im Modell berücksichtigt haben. Vor allem Bildung und Wachstum der NAT-Teilchen ist dabei sehr wichtig, da diese Prozesse in Modellen nur auf Basis von Messungen parametrisiert, aber bis jetzt noch nicht komplett verstanden sind. Selbst bei verbesserten Parametrisierungen treten immer noch Abweichungen zwischen Simulation und Messung (z.B. Größenverteilung der NAT-Teilchen, NOy Umlagerung) auf.Messungen des flugzeuggetragenen Infrarot-Limbsounders CRISTA-NF (CRyogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers) werden verwendet, um mehr über die relevanten Prozesse zu lernen. CRISTA-NF misst Höhenprofile der thermischen Emission verschiedener Spurengase im mittleren Infrarot. Die Messungen ermöglichen die Herleitung 2-dimensionaler Vorhänge der Mischungsverhältnisse unterschiedlicher Spurengase (z.B. HNO3, CFC-11, O3, ClONO2) und zudem die Detektion verschiedener PSCs (NAT, STS (Supercooled Ternary Solution) und Eis). Kleine NAT-Teilchen (Radius größer als 3 mym) verursachen eine spektrale Signatur, die zur Detektion verwendet wird. Neue Ergebnisse zeigen, dass es zu einem Verschub der Signatur kommen kann und dass die Stärke des Verschubs von der Größenverteilung der Teilchen abhängt. In der bestehenden Detektionsmethode wird der Verschub nicht berücksichtigt und die Methode wird verbessert werden, um Fehlinterpretationen zu reduzieren. Zudem wird die neue Methode die Herleitung von Informationen über die Größenverteilung kleiner NAT-Teilchen ermöglichen. Weiterhin soll der Strahlungseinfluss aufgrund der PSCs im Retrieval berücksichtigt werden, was die Herleitung von Spurengasmischungsverhältnissen in der Gegenwart von PSCs deutlich verbessert.Innerhalb des Projekts werden Simulationen des Chemie-und-Transport-Modells ClaMS (Chemical Lagrangian Model of the Stratosphere) verwendet werden. Vergleiche zwischen den CRISTA-NF Beobachtungen und den Modellergebnissen werden genutzt, um die wichtigen Prozesse besser zu verstehen. Detaillierte Vergleiche ermöglichen die Untersuchung verschiedener Aspekte, wie den Einfluss eines möglichen Temperaturbias oder Temperaturschwankungen auf die NAT Bildung und den Einfluss der Modellauflösung (zeitlich und räumlich). Vor allem kann man aber die Bildung von und die HNO3-Aufnahme durch NAT- und STS-Teilchen, die zur selben Zeit vorhanden sind, untersuchen sowie die Konsequenzen auf die Größenverteilungen und NOy Umlagerung.
Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.
Spektro-Radiometer im Millimeterwellenbereich erlauben wichtige Spurengase wie Ozon, Kohlenmonoxyd, Wasserdampf, Chlormonoxyd sowie Atmosphaerenparameter wie Temperatur und Druck ueber grosse Abstaende als Funktion der Hoehe in Strato- und Mesosphaere (ca. 10 bis 80 km) zu messen. Es werden Langzeitbeobachtungen vom Boden aus gemacht sowie mit Flugzeuggetragenen Instrumenten ueber grosse Abstaende (Meridian) geflogen, um sowohl zeitliche Entwicklung wie geographische Verteilung zu studieren. Ein Space-Shuttle-getragenes Experiment fuer globale Beobachtung ist in Vorbereitung. Das Ziel ist die Verbesserung des Verstaendnisses der Atmosphaeren-Chemie sowie die Verfolgung langzeitiger Veraenderungen durch natuerliche und anthropogene Einfluesse.
Zielsetzung: Bestimmung der globalen Verteilung der oben genannten Gase in der Atmosphaere. Schwerpunkt liegt auf der Erfassung eines moeglichen Unterschiedes der Konzentration des betreffenden Gases zwischen der Troposphaere und Stratosphaere sowie zwischen den beiden Hemisphaeren. Aus den Messungen lassen sich wichtige Rueckschluesse auf moegliche Abbau- bzw. Produktionsprozesse ziehen. Methoden: Einbau von Messgeraeten in Flugzeuge und Messungen; Sammeln von Luftproben in der Stratosphaere mit Hilfe von Ballonen und Analyse im Labor; Einsatz von z.T. selbst entwickelten Messgeraeten.
Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.
Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Der asiatische Sommermonsun ist charakterisiert durch hohe Konvektion über Südasien, die mit der asiatischen Monsun-Antizyklone (AMA) zusammenhängt, der sich von der oberen Troposphäre bis in die untere Stratosphäre (UTLS) erstreckt. Diese Antizyclone ist das ausgeprägteste Zirkulationsmuster in diesen Höhen während des borealen Sommer. Es ist bekannt, dass der Export von Monsunluft quasi-isentropisch aus der AMA sowohl im Osten als auch im Westen, einen großen Einfluss auf die Zusammensetzung der außertropischen unteren Stratosphäre hat. Jedoch sind die relative Stärken der beiden Wege bisher unbekannt. Der Transport von Luftmassen aus der AMA in die nördliche außertropische UTLS wirkt sich entscheidend auf die Chemie der Stratosphäre und ihrenStrahlungshaushalt (z.B. durch Transport von H2O, Aerosol oder ozonschädigende Stoffe) aus. Im Rahmen dieses Projekts AirExam wird der quasi-isentropischer Luftmassenexport aus der AMA durch verschiedene Wegen und seine Auswirkungen auf Chemie und Strahlung der außertropische UTLS quantifiziert durch u.a. HALO-Flugzeugmessungen (insbesondere aus die für Sommer 2023 geplanten PHILEAS-Kampagne), Simulationen mit dem Chemischen Transportmodell CLaMS und Strahlungsberechnungen. Unser Projekt AirExam wird sich mit den folgenden offenen Schlüsselfragen befassen:1) Welchen relativen Beitrag leisten die beiden quasi-horizontalen Transportwege (nach Westen und Osten) aus dem asiatischen Monsun-Antizyklon zur Zusammensetzung der außertropischen unteren Stratosphäre?2) Wie groß ist die jährliche Variabilität des Transports aus der asiatischen Monsun-Antizyklone in die außertropische untere Stratosphäre und was sind die Hauptquellenregionen auf der Erde Oberfläche?3) Was ist die Auswirkung des Wasserdampftransports aus der asiatischen Monsun-Antizyklone zum H2O-Budget der außertropischen UTLS und seine Strahlungswirkung?In unserem Projekt werden wir HALO-Messungen (insbesondere H2O) mit globalen 3-dimensionalen CLaMS-Simulationen kombinieren, die von neuen hochaufgelösten ERA-5-Reanalyse des ECMWF angetrieben werden. CLaMS-Simulationen auf der Grundlage von ERA-5 sind ein neues Instrument zur zuverlässigen Beschreibung von Transportprozessen in der Region des asiatischen Monsuns und seiner globalen Auswirkungen. Die Strahlungswirkung des durch den asiatischen Monsun verursachten H2O-Anstiegs im Sommer und Herbst wird mit Hilfe des Strahlungs-Transfercodes Edwards und Slingo berechnet. H2O ist das wichtigste Treibhausgas, und die Befeuchtung der Stratosphäre ist eine wichtige Triebkraft des Klimawandels. Unser Projekt AirExam wird die Auswirkungen des verstärkten H2O-Transports in die untere Stratosphäre quantifizieren und kann daher dazu beitragen, die potenziellen Risiken des Luftmassentransports aus der asiatischen Monsunregion auf die globale Stratosphäre zu bewerten.
Die Auswirkungen von Zirrus-Wolken auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre sind ein nur mit großen Unsicherheiten bekannter Faktor im globalen Klimawandel. Die Nukleation und das Wachstum von Eispartikeln in Zirren können die vertikale Umverteilung des wichtigsten Treibhausgases Wasserdampf (H2O) bewirken. Weiterhin sind Eispartikel in Zirren in der Lage, Salpetersäure (HNO3) und weitere Verbindungen aufzunehmen und vertikal umzuverteilen. Genaue Simulationen von Zirren und deren Auswirkungen auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre stellen eine Herausforderung für numerische Wettervorhersagemodelle und Chemie-Klima-Modelle dar. In dem vorgestellten Projekt sollen mittels Messungen des GLORIA-Spektrometers während der HALO-Mission (High Altitude and LOng range research aircraft) POLSTRACC/GW-LCYCLE/SALSA und Modell-Simulationen die Auswirkungen von Zirren auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre in hohen Breiten untersucht werden.
In its first phase, MiKlip has made important research contributions and has developed an internationally competitive decadal climate prediction system. Building on these results, the overarching goal for MiKlip II is to establish and improve the decadal climate prediction system that eventually can be transferred to the German meteorological service DWD for operational use. MiKlip II is funded by the German Ministry for Education and Research (BMBF) with about 13 Mio. € for three years of collaborative research and a fourth year focusing on the operational implementation of the prediction system. MiKlip II involves 16 national partners from universities, research institutions and federal agencies.
Origin | Count |
---|---|
Bund | 657 |
Land | 12 |
Wissenschaft | 4 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Ereignis | 2 |
Förderprogramm | 640 |
Text | 13 |
unbekannt | 17 |
License | Count |
---|---|
geschlossen | 26 |
offen | 646 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 530 |
Englisch | 223 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 3 |
Dokument | 5 |
Keine | 571 |
Unbekannt | 1 |
Webseite | 100 |
Topic | Count |
---|---|
Boden | 521 |
Lebewesen und Lebensräume | 523 |
Luft | 673 |
Mensch und Umwelt | 672 |
Wasser | 510 |
Weitere | 654 |