API src

Found 1015 results.

MEPHYSTO: Combining population dynamics and drought related ecophysiology in the regional forest model TreeMig

The project is part of the COST action FP0603 Forest models for research and decision support in sustainable forest management (http://www.cost.esf.org/index.php?id=143&action number=FP0603) which aims at extending the scope of forest models from growth only to population dynamics and ecophysiology. Rationale: For sustainable forest management over large areas and for simulating different forest functions especially under changing conditions, different aspects of the system forest' must be modelled jointly: ecophysiological/biogeochemical processes, population dynamics, spatial interactions, and horizontal/vertical species stand structure. We develop a forest model with a stand-size grain suitable to be applied on large areas for assessment of, e.g., climate change or management effects on forest functions. This is achieved by merging and if necessary up- and down-scaling model functions of ecophysiological and population dynamical processes contained in existing models (single tree physiology, local scale ecophysiological, empirical forest growth, spatio-temporal forest landscape, and dynamic global vegetation models). Drought is predicted to occur more frequently with climate change, thus the main focus is on drought and the mechanisms how it affects the trees. Research questions: What are the mechanisms by which drought affects trees? Which is the best (sufficiently accurate and efficient) way to model and simulate these mechanisms? How can population dynamics and ecophysiology be combined in a landscape scale model concerning - allocation of water and carbohydrates to trees and organs? - spatial heterogeneity of soil water and trees? Methods: The project builds on the climate-driven forest landscape model TreeMig (Lischke et al., 2006). Process descriptions from various existing models are compiled, evaluated and included into TreeMig. This involves a thorough scaling of process formulations. Drought effects, involving soil water balance, stomata regulation, photosynthesis, CO2 fertilization effects, allocation of carbohydrates, dynamics of reserve pools and the relationship between these and regeneration, growth and mortality are studied in literature and other models and included into MEPHYSTO.

Complex study and physical mapping of genes in hexaploid wheat, responsible for embryo development of wheat-rye hybrids via interaction with rye genome

One of the reproductive barriers that can isolate species is embryo lethality which is due to disfunctional interaction between parental genomes. Embryo lethality obtained in crosses of hexaploid wheat with diploid rye is the result of complement interaction between the two genes/alleles Eml-A1 and Eml-R1b from wheat and rye, respectively. In addition, the 1D wheat chromosome carries unknown genetic factor(s) which have strong effect on the viability of wheat-rye hybrid seeds. The goals of the project are: (I) physical mapping and studying dosage effect of Eml-A1 gene (II) development of a method for overcoming embryo lethality in wheat-rye hybrids and (III) physical mapping and cytological study of chromosome 1D wheat gene(s) essential for seed development in wheat rye hybrids. The development of a method of regeneration in callus culture from abnormal immature embryos with lethal genotype by indirect organogenesis will enable us to study the interaction and expression of incompatible wheat Eml-A1 and rye Eml-R1b alleles causing embryo lethality. New information about genes, involved in apical meristem development in early stages of embryogenesis of wheat-rye hybrids (and of other plants) will be gained.

Umweltgerechtigkeit Berlin 2023/2024

Inhaltliche Herangehensweise Der Berliner Ansatz der Bewertung der Umweltgerechtigkeit beruht im Wesentlichen auf der Auswertung und Aggregation vorhandener Daten. Er ist als zweistufiges Verfahren mit fünf Kernindikatoren: Lärmbelastung Luftbelastung Thermische Belastung Grün- und Freiflächenversorgung Soziale Benachteiligung und drei die Einzelbewertungen zusammenführenden Mehrfachbelastungskarten: Mehrfachbelastungskarte Umwelt Mehrfachbelastungskarte Umwelt und Soziales und Berliner Umweltgerechtigkeitskarte konzipiert. „Bei der Zusammenführung der verschiedenen Datenquellen sind drei besondere Herausforderungen auszumachen: Die sektoralen Daten unterscheiden sich in ihrer jeweiligen Methodik, in ihrer räumlichen Auflösung und Darstellung sowie in der Häufigkeit, mit der sie aktualisiert werden. Als kleinste Analyseeinheit für den Umweltgerechtigkeitsatlas wurde der stadtentwicklungspolitische Planungsraum aus dem System Lebensweltlich orientierter Räume gewählt, auf den die sektoralen Daten dann umgerechnet wurden. So konnte die heterogene Datenlage für die Zwecke dieser Analyse harmonisiert und integriert werden. Gleichzeitig ist der Detailierungsgrad der ursprünglichen Daten abgeschwächt. Eine genauere Betrachtung der Ausgangsdaten ist aber jeweils möglich“. (SenMVKU 2025, S. 6) In einem ersten Schritt des Analyseverfahrens wurden die Daten zu den drei Kernindikatoren Luft-, Lärm- und Thermische Belastung analysiert und entsprechend dem gesundheitlichen Belastungsrisiko einheitlich als „hoch“, „mittel“, oder „gering“ belastet eingestuft. Die Einstufung des Kernindikators “Grün- und Freiflächenversorgung” erfolgte in Anlehnung an Kennwerte des Deutschen Städtetags und der Kernindikator “Soziale Benachteiligung” ausgehend vom Monitoring Soziale Stadtentwicklung 2023. Im zweiten Schritt wurden die individuellen monothematischen Kernindikatoren-Karten zusammengeführt, um die Verteilung bzw. Überlagerung der Umweltbelastungen („Integrierte Mehrfachbelastungskarte Umwelt“) sowie der Umweltbelastungen einschließlich der Sozialen Benachteiligung („Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung“) darzustellen. Die beiden Karten zeigen auf der Ebene der Planungsräume die Spannbreite von PLR ohne starke Belastung auch nur eines der Kernindikatoren bis zu den PLR mit 4-fach- bzw. 5-fach-Belastungen (vgl. Abb. 2). Damit wurde für jeden Planungsraum der Mehrfachbelastungsfaktor durch Summierung derjenigen Kernindikatoren ermittelt, die der Kategorie 3 („niedrig“/“schlecht“/“hoch”)) zugeordnet wurden. Anzahl und Verteilung der mehrfach belasteten Räume sowie die verursachenden Belastungen sind somit nachvollziehbar und transparent. Diese Statusbestimmung durch das zweistufige Berliner Umweltgerechtigkeitsmonitoring stellt somit einen Überblick über die Umweltqualität in den 542 Planungsräumen der Stadt zur Verfügung. Als Lärm werden Schallereignisse beschrieben, die durch ihre individuelle Ausprägung als störend und/oder belastend für Wohlbefinden und Gesundheit wahrgenommen werden. Lärm kann insbesondere im städtischen Raum als ein zentraler, die Gesundheit beeinträchtigender Faktor benannt werden. Lärmimmissionen können je nach Expositionsumfang, -zeitraum und -dauer direkte und indirekte gesundheitliche Wirkungen nach sich ziehen. “Die Datenbasis für die Angaben zur Lärmbelastung der Planungsräume sind die Strategischen Lärmkarten für den Ballungsraum Berlin für das Jahr 2022, welche entsprechend den Anforderungen der 34. Bundes-Immissionsschutzverordnung und europarechtlichen Vorgaben erarbeitet wurden. Gemäß § 47c BImSchG sind Lärmkarten alle fünf Jahre zu überprüfen und bei Bedarf zu aktualisieren. Darauf aufbauend wurde eine Gesamtverkehrslärmkarte erstellt, die die Verkehrslärmquellen Straßen-, U-Bahn- (soweit oberirdisch) und Straßenbahnverkehr, Eisenbahnverkehr/S-Bahn- und Flugverkehr beinhaltet. Vorrangiges Ziel bei der Erstellung von Lärmkarten und der daraus resultierenden Lärmaktionsplanung ist die Minderung gesundheitsrelevanter Lärmbelastungen durch Reduzierung der Verkehrslärmemissionen. Dies trägt nicht nur zu einer besseren Wohnqualität in der Stadt bei, es erhöht auch die Aufenthaltsqualität in den Stadträumen. Gemäß der Lärmwirkungsforschung steigt ab einer Dauerbelastung von 55 dB(A) nachts und 65 dB(A) tags das Risiko von Herz-Kreislauf-Erkrankungen durch chronischen Lärmstress. Die Strategische Lärmkarte umfasst 3.799.922 Immissionspunkte im gesamten Untersuchungsgebiet, die an Gebäudefassaden in vier Meter Höhe über Grund angeordnet sind und daher als Fassadenpegel bezeichnet werden. Zu jedem dieser Immissionspunkte gehört ein Datensatz, der neben der definierten Position den LDEN (den Mittelwert über 24 Stunden), den LN (Nachtwert von 22:00 bis 6:00 Uhr) der verschiedenen zu modellierenden Verkehrslärmquellen sowie die dem jeweiligen Immissionspunkt zugeordnete Zahl an Einwohnenden enthält. Um die ermittelten Mittelwerte je Planungsraum den drei Bewertungskategorien „Belastung gering, mittel, hoch“ zuzuordnen, fand eine quartilsbezogene Unterteilung statt. Die besten 25% der Werte wurden von allen personen- und planungsraumbezogenen Mittelwerten bis 47,43 dB(A) eingenommen, die schlechtesten 25% lagen über dem Schwellenwert von 51,58 dB(A) (vgl. Abb. 3).“ (SenMVKU 2025, S. 8) Zur Bewertung der Luftbelastung gelten die drei Schadstoffe Feinstaub (PM 2,5 PM 10 ) und Stickstoffdioxid (NO 2 ) trotz der erreichten immissionsmindernden Erfolge (vgl. Umweltatlas-Karte 03.12.1 Langjährige Entwicklung der Luftqualität ) weiterhin als gesundheitlich relevant und wurden daher auch in diesem Kontext zur Bewertung herangezogen. „Die Jahresmittelwerte 2023 der Konzentration von Feinstaub (PM 10 , PM 2,5 ) und Stickstoffdioxid (NO 2 ) lieferten die Basis, um die Luftbelastung der 542 Planungsräume zu kategorisieren. Grundlage der Abschätzung der Luftschadstoffbelastung in Berlin waren die für das Jahr 2023 gemessenen Jahresmittelwerte der NO2-Konzentrationen an über 40 Messorten und der PM 2,5 - und PM 10 -Konzentrationen an 12 Messorten. Die Daten werden jährlich aktualisiert. Die Messwerte wurden rechnerisch auf das gesamte Berliner Gebiet übertragen. Hierzu wurden die Messwerte anhand einer Landnutzungs-Regressionsanalyse statistisch auf ein regelmäßiges 50-Meter-Raster interpoliert. Anschließend wurden die Mittelwerte entsprechend den jeweiligen Quartilen (analog zum Kernindikator Lärmbelastung) in drei Kategorien unterteilt: hoch, mittel und gering. Die Quartile NO 2 der aktuellen Berechnung liegen bei 12,9 µg/m³ (25 %-Quantil) und 17,8 µg/m³ (75%-Quantil) (vgl. Abb. 4). In einem letzten Schritt wurden die Werte für NO2, PM2,5 und PM10 zu einer Gesamtbewertung kombiniert. Dabei bestimmte die höchste Kategorie aller drei Luftschadstoffe die endgültige Bewertung des Planungsraums.“ (SenMVKU 2025, S. 9) „Die thermische Belastung bezeichnet den negativen Einfluss auf den Körper, der im Sommer durch Hitze entsteht und so zu Unwohlsein oder gesundheitlichen Beeinträchtigungen führen kann. Angesichts des globalen Klimawandels kommt es auch in Berlin zu einer Zunahme von Hitze mit unterschiedlichen gesundheitlichen Auswirkungen, die sich insbesondere bei älteren Menschen in einer vorzeitigen Sterblichkeit oder bei Schwangeren in Frühgeburten auswirken können. Kleinräumige Daten zum Hitzestress werden durch die gesamtstädtische Klimamodellierung 2022 im Land Berlin in Form von Rasterwerten in der Auflösung von 10 mal 10 Metern bereitgestellt. Zur Bewertung der thermischen Belastung am Tage wird der Bewertungsindex PET (Physiologisch Äquivalente Temperatur) herangezogen, der in Wissenschaft und Technik (siehe VDI Richtlinie VDI 3787 Blatt 2: Umweltmeteorologie) angewendet wird. Der PET berücksichtigt die relevanten auf den Körper wirkenden thermischen Einflussfaktoren, die in Grad Celsius (°C) angegeben und in Belastungs-stufen eingeteilt werden. Eine wichtige PET-Einflusskomponente ist die Wirkung der Sonneneinstrahlung. Da diese in der Nacht entfällt, wird zur Bewertung der nächtlichen bioklimatischen Belastung die modellierte Lufttemperatur herangezogen. Der Tag und die Nacht werden in einer Gesamtbewertung zusammengeführt. Für die Bewertung der Wärmebelastung wurden die Mittelwerte der Ausgangsraster pro Blockteil- beziehungsweise Straßenfläche genutzt: für die Tagsituation diejenigen des Bewertungsindex PET in 2 Metern Höhe um 14:00 Uhr in der Einheit °C sowie für die Nachtsituation diejenigen der Lufttemperatur, ebenfalls in 2 Metern Höhe in °C, jedoch bezogen auf den Zeitpunkt 4:00 Uhr. Damit standen Ausgangswerte für rund 23.700 Blockteilflächen und etwa 22.100 Straßenflächen zur Verfügung. Feste Grenzwerte des PET für die Kategorisierung der Tagsituation beruhen auf folgenden Vorgaben: günstig: unter 29°C / weniger günstig: über 29°C bis unter 35°C / un-günstig: über 35°C bis unter 41°C / sehr ungünstig: über 41°C. Im Gegensatz zur Tagsituation ist die Basis der Kategorisierung der Nachtsituation der Mittelwert der Lufttemperatur um 4 Uhr morgens. Analog zum PET-Wert wurde auch die Lufttemperatur den genannten vier ordinalen Klassen zugeordnet: günstig: unter 17°C / weniger günstig: über 17°C bis unter 18°C / ungünstig: über 18°C bis unter 19°C / sehr ungünstig: über 19°C. Für die Gesamtbewertung auf der Ebene der Blockteilflächen wurden die Kategorien der Tag- und Nachtsituation verknüpft, das heißt, es wurden für alle vorkommenden Kombinationen der Tag- und Nacht-Kategorien „wenn-dann-Beziehungen“ festgelegt, die die abschließende Klassen-Einstufung bestimmen. Für den finalen Arbeitsschritt – die Gesamtwertung auf der Ebene der 542 Planungsräume – wurden die im vorhergehenden Schritt befüllten Kategorien flächengewichtet aggregiert. Auf diese Weise entstanden flächengewichtete Mittelwerte der vier Kategorien für alle Planungsräume. Um den Kernindikator thermische Belastung entsprechend dem Berliner Umweltgerechtigkeitsansatz bewerten zu können, ist eine abschließende Kategorisierung der ermittelten Werte auf eine dreistufige Skala notwendig: Dazu wurden die flächengewichteten Mittelwerte der vier Kategorien in drei gleich große Intervalle aufgeteilt. Damit gibt diese Skala eine Einteilung der Planungsräume in eine hohe, mittlere und geringe Belastung wieder.“ (SenMVKU 2025, S. 10) „Grünflächen entlasten die Gesundheit in doppelter Hinsicht: Sie reduzieren die Belastung durch Schadstoffe und Hitze und bieten gleichzeitig Raum und Gelegenheit für Erholung und Bewegung. Im Indikator wird diese Ressource invers berücksichtigt: Nicht ihr Vorhandensein gilt als Entlastungs-, sondern ihr Fehlen als Belastungshinweis. Grundlage für die Indikatorenberechnung waren die Bestandsanalyse Versorgung mit öffentlichen wohnungsnahen Grünanlagen in Verbindung mit dem Programmplan Erholung und Freiraumnutzung im Landschaftsprogramm Berlin. Der Versorgungsanalyse für Berlin liegen Richtwerte des deutschen Städtetags zugrunde. Gemäß diesen Richtwerten sollten sechs Quadratmeter pro Person für wohnungsnahe Freiräume (mindestens 0,5 Hektar, höchstens 500 Meter entfernt) und sieben Quadratmeter pro Person für siedlungsnahe Freiräume (mindestens zehn Hektar, hächstens 1.500 Meter entfernt) zur Verfügung stehen. Die komplexe Methodik der Versorgungsanalyse kann an dieser Stelle nicht im Detail erläutert werden, ist aber in der Umweltatlaskarte 06.05 Versorgung mit wohnungsnahen, öffentlichen Grünanlagen 2020 ausführlich beschrieben. Sie mündet in einer blockweisen Zuordnung zu vier Dringlichkeitsstufen. Diese blockspezifischen Dringlichkeitsstufen wurden unter Berücksichtigung der jeweiligen Bevölkerungszahl auf die Planungsräume aggregiert. Im Ergebnis wird erneut eine Einordnung in drei Kategorien vorgenommen: von sehr gut / gut über mittel bis schlecht / sehr schlecht / nicht versorgt. Ausschlaggebend waren damit nur die verfügbaren Grünflächen und die Bevölkerungszahl; die Ausstattungsqualität der Grünflächen blieb unberücksichtigt.“ (SenMVKU 2025, S. 11) Grundlage zur Bewertung waren die Ergebnisse des stadtweiten Monitorings Soziale Stadtentwicklung (MSS), durch das seit 1998 im Rahmen eines kontinuierlichen, alle 2 Jahre fortgeschriebenen „Stadtbeobachtungssystems“ die soziale Lage der Bevölkerung auf der Ebene der Planungsräume ausgewertet und bereitgestellt wird. Aktuelle und frühere Ergebnisse des MSS stehen im Geoportal des Landes Berlin online zur Verfügung. Basis dieses Kernindikators war die Ausgabe 2023 dieses Monitorings. „Kern des Monitorings Soziale Stadtentwicklung sind aktuell vier Index-Indikatoren, die soziale Ungleichheit auf Ebene der Planungsräume beschreiben. Diese sind der Anteil Arbeitslosigkeit (nach SGB II), der Anteil Transferbezug der Nicht-Arbeitslosen (nach SGB II und XII) und der Anteil Kinderarmut (Transferbezug SGB II der unter 15-Jährigen) sowie – neu – der Anteil Kinder und Jugendliche in alleinerziehenden Haushalten“. (SenMVKU 2025, S. 11) „Für den Umweltgerechtigkeitsatlas wurde der Status-Index zugrunde gelegt: Je höher die Anteile von Arbeitslosigkeit, Empfang von Transferleistungen und Kinderarmut in den Planungsräumen, desto niedriger fällt deren Status-Index aus. Die Dynamik dieser Bereiche wird hierfür nicht betrachtet. Die Kategorien „niedrig“ und „sehr niedrig“ wurden zur besseren Vergleichbarkeit mit anderen Kernindikatoren zusammengefasst. Planungsräume mit weniger als 300 Einwohnenden werden von der Indexberechnung ausgeschlossen, um kleinräumige Verzerrungen zu vermeiden (im Monitoring Soziale Stadtentwicklung 2023 betraf dies fünf Planungsräume).“ (SenMVKU 2025, S. 11) Umweltgerechtigkeit kann nur als ein multidimensionales Thema betrachtet werden, es bedarf der integrierten Analyse und zusammenführenden Darstellung verschiedener Umweltbelastungen, aber auch von Umweltressourcen in ihrer sozialräumlichen Verteilung. Im Ergebnis des zweistufigen Umweltgerechtigkeitsmonitorings wurden folgende (integrierte) Mehrfachbelastungskarten erarbeitet (vgl. Abb. 2): „Integrierte Mehrfachbelastungskarte Umwelt“ , sie zeigt die vier umweltbezogenen Mehrfachbelastungen (Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung) „Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung“ , sie erweitert die erste Karte um den 5. Kernindikator Soziale Benachteiligung „Berliner Umweltgerechtigkeitskarte 2023/2024“ , sie stellt neben den fünf Kernindikatoren noch die Betroffenheit (Anzahl der Einwohnerinnen und Einwohner in den Planungsräumen) sowie den Status der Wohnlage dar. „Wie sind die Umweltbelastungen in Berlin verteilt? Die vier Kernindikatoren, Luft-, Lärm-, thermische Belastung und Grünflächenversorgung kumuliert ergeben die „ Integrierte Mehrfachbelastungskarte Umwelt “. Sie zeigt für die Planungsräume der Stadt, wie viele der Umweltindikatoren in die jeweils schlechteste Kategorie fallen und identifiziert damit Räume mit mehrfach hoher Umweltbelastung.“ (SenMVKU 2025, S. 24) Um die räumliche Konzentration der Belastung durch Umweltfaktoren bei gleichzeitiger sozialer Beeinträchtigung zu visualisieren, wurde die Mehrfachbelastungskarte Umwelt um die Komponente der sozialen Benachteiligung („niedriger Statusindex“) erweitert („ Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “). Nicht berücksichtigt werden können mit dem bisherigen Ansatz die individuelle Exposition und Vulnerabilität des/der Einzelnen, also zum Beispiel physiologische Faktoren (etwa genetische Disposition, Stoffwechsel) sowie das individuelle Gesundheitsverhalten. Daher „kann eine Exposition trotz gleicher Intensität zu unterschiedlichen gesundheitlichen Wirkungen führen. Verantwortlich hierfür ist die individuelle Vulnerabilität, die den sogenannten Expositionseffekt modifizieren kann.“ ( BZgA online 2024 ). „Die „ Berliner Umweltgerechtigkeitskarte 2023/2024 “ ergänzt die Darstellung der „ Integrierten Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “ um die Bevölkerungsdichte. Außerdem sind in ihr Planungsräume markiert, in denen eine überwiegend einfache Wohnlage mit einer sehr hohen Luft- und/oder Lärmbelastung zusammenfällt.“ (SenMVKU 2025, S. 26) Der Berliner Umweltgerechtigkeitsansatz konzentriert sich auf die Lebensbereiche und Wohnorte der Bewohnerinnen und Bewohner. Gebiete außerhalb der Siedlungsräume wie die Wälder, großen Park- und Freizeitanlagen sowie Flächen, die als Arbeitsstätten genutzt werden, besitzen im gesamtstädtischen Kontext ebenfalls wichtige Funktionen, werden aber in den Umweltgerechtigskarten ausgeblendet. Zu diesem Zweck überlagert die Kartenebene „weitgehend unbewohnte Flächen“ die Gesamtdarstellungen. „Wird Berlin umweltgerechter? Diese Frage liegt bei der Aktualisierung des Umweltgerechtigkeitsatlas nahe, denn ein zentrales Anliegen bei Fortschreibungen ist die Frage, ob sich die Situation im Zeitverlauf verändert hat – ob Berlin also umweltgerechter geworden ist. Ein solcher Vergleich kann Hinweise auf Wirkungen politischer Maßnahmen und Entwicklungen im Stadtgefüge geben. Aufgrund der hier beschriebenen methodischen Anpassungen und veränderten Datengrundlagen lasst sich diese Frage derzeit jedoch nicht beantworten. Der Umweltgerechtigkeitsatlas stellt vielmehr eine Momentaufnahme dar: Er zeigt die aktuelle Verteilung von Umweltbelastungen und sozialer Benachteiligung innerhalb Berlins – stets im relativen Vergleich der Planungsraume zueinander. Die folgenden Abschnitte erläutern, warum die Abbildung einer Trendentwicklung methodisch nicht möglich ist und was bei der Interpretation der Karten zu beachten ist. Grundlage für die Integrierte Mehrfachbelastungskarte und Berliner Umweltgerechtigkeitskarte sind Daten der Kernindikatoren Luft, Lärm, thermische Belastung und Grünflächenversorgung sowie Daten des Monitoring Soziale Stadtentwicklung. Teilweise werden diese Daten gemessen, teilweise errechnet, teilweise werden verschiedene Datenquellen miteinander verschnitten. Die Daten dieser fünf Kernindikatoren werden dann übereinandergelegt und um die Informationen der Wohnlage und der Bevölkerungsdichte ergänzt. Es handelt sich um Daten, die einer vorgegebenen Art der Erhebung sowie Periodizität unterliegen. Diese generelle Systematik des Umweltgerechtigkeitsatlas macht es notwendig, auch auf die Grenzen der Aussagekraft der hier berichteten Werte hinzuweisen, um Interpretationsfehlern und Missverständnissen vorzubeugen. Im Mittelpunkt des Interesses dieses Monitorings steht der Gerechtigkeitsaspekt und damit die Frage, wie sich die Belastung der Gebiete in Berlin im Vergleich zueinander verhält. Nach aktueller Herangehensweise ist es nicht möglich, die Ergebnisse über die Zeit hinweg zu vergleichen: Dies liegt sowohl an kleineren Anpassungen in der Berechnung und Klassifizierung der Indikatoren als auch an der statistischen Zusammenfassung der Daten. Dies ist auch darin begründet, dass sich die Methodik zur Messung von Umweltqualität und sozialer Lage ständig weiterentwickelt und dadurch aussagekräftiger wird.“ (SenMVKU 2025, S. 12) „Um die einzelnen Indikatoren zusätzlich zur Umweltgerechtigkeitsanalyse separat und absolut zu vergleichen, sollten die Daten des Geoportals und des Umweltatlas herangezogen werden: Diese Daten geben ein detaillierteres Bild der Belastungen in Berlin. In diesem Monitoring liegt der Schwerpunkt auf einer kombinierten und ganzheitlichen Darstellung. Dies vermittelt ein besseres Verständnis der relativen Ungleichheit und des Zusammenspiels der Belastungsquellen, als es die Umweltdaten isoliert betrachtet ermöglichen.“ (SenMVKU 2025, S. 13)

Der Teufel steckt im Detail: Kontrolle phageninduzierter Stoffkreisläufe in Böden durch das Mikrohabitat

Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.

Quantifizierung der Auswirkungen von Blitzschlägen auf die Dynamik und Kohlenstoffspeicherung von Wäldern mithilfe eines dynamischen globalen Vegetationsmodells

Blitze stellen einen bedeutenden, jedoch oft unbeachteten Störfaktor in Waldökosystemen dar, deren potenzielle Auswirkungen derzeit unterschätzt werden. Jüngste Forschungen in einem tropischen Wald in Panama haben ergeben, dass jeder Blitzschlag durchschnittlich zum Tod von 3,5 Bäumen führt und dass Blitze für über 40% der Mortalität großer Bäume verantwortlich sind. Angesichts einer erwarteten Zunahme der Blitzaktivitäten in einem wärmeren Klima wird die durch Blitze verursachte Baummortalität die Walddynamik in Zukunft voraussichtlich noch stärker beeinflussen. Aktuelle dynamische globale Vegetationsmodelle berücksichtigen jedoch keine Blitzschäden an Bäumen. Dies könnte zu erheblichen Verzerrungen bei der simulierten Waldstruktur, Zusammensetzung, Kohlenstoffspeicherung und Ökosystemdienstleistungen unter heutigen und zukünftigen Umweltbedingungen führen. Dieses Projekt zielt darauf ab, diese Forschungslücke zu schließen, indem blitzbedingte Baummortalität in das etablierte dynamische globale Vegetationsmodell LPJ-GUESS implementiert wird. Ich werde die blitzbedingte Mortalität basierend auf der lokalen Blitzhäufigkeit, Baumdurchmessern und Baumdichte berechnen und dabei berücksichtigen, dass die Mortalität pro Einschlag für große, eng beieinanderstehende Bäume am höchsten ist. Nach erfolgreicher lokaler Evaluierung werde ich globale Simulationen durchführen, um Einblicke darüber zu gewinnen, wie Blitze Waldökosysteme in verschiedenen Regionen prägen und um die Bedeutung von blitzbedingter Baummortalität im Vergleich zu anderen Absterbeursachen abzuschätzen. Darüber hinaus werde ich zukünftige Simulationen durchführen, die von Projektionen des Klimawandels sowie Änderungen in der Blitzhäufigkeit angetrieben werden, um das Fortbestehen der Waldkohlenstoffsenke unter globalen Umweltveränderungen zu untersuchen. Schließlich wird die Darstellung von Blitzen in LPJ-GUESS es mir auch ermöglichen, deren indirekten Auswirkungen auf die Vegetation zu untersuchen, indem sie andere Störungen wie Waldbrände, Insektenausbrüche oder Windwürfe begünstigen. Das übergeordnete Ziel des Projekts besteht darin, die Bedeutung von blitzbedingter Baummortalität in Waldökosystemen zu bewerten und die ökologischen Risiken und Auswirkungen, die mit einer zunehmenden Blitzhäufigkeit einhergehen, abzuschätzen. Letztendlich wird die Integration blitzbedingter Mortalität in LPJ-GUESS zu verlässlicheren Simulationen der Kohlenstoffspeicherung von Wäldern führen und somit wertvolle Erkenntnisse für fundierte Entscheidungen in Bezug auf Landnutzungsstrategien zum Klimaschutz, Naturschutz und Anpassung liefern.

Daily HUME: Daily Homogenization, Uncertainty Measures and Extremes (Homogenisierung täglicher Daten, Fehlermaße und Extreme)

Global change not only affects the long-term mean temperature, but may also lead to further changes in the frequency distribution and especially in their tails. The study of the whole frequency distribution is important as, e.g., heat and cold waves are responsible for a considerable part of morbidity and mortality due to meteorological events. Daily datasets are essential for studying such extremes of weather and climate and therefore the basis for political decisions with enormous socio-economic consequences. Reliably assessing such changes requires homogeneous observational data of high quality. Unfortunately, however, the measurement record contains many non-climatic changes, e.g. homogeneities due to relocations, new weather screens or instruments. Such changes affect not only the means, but the whole frequency distribution. To increase the quality and reliability of global daily temperature records, we propose to develop an automatic homogenisation method for daily temperature data that corrects the frequency distribution. We propose to describe homogenisation as an optimisation problem and solve it using a genetic algorithm. In this way, entire temperature networks can be homogenised simultaneously leading to an increase in sensitivity, while avoiding setting false (spurious) breaks. By not homogenising the daily data directly, but by homogenising monthly indices (probably the monthly moments), the full power and understanding of monthly homogenization methods can be carried over to the homogenisation of daily data. Furthermore, in an optimisation framework, the optimal temporal correction scale can be determined objectively and straightforwardly, that is whether the corrections are best applied annually (all twelve months get the same correction), semi-annually, seasonally or monthly. All three aspects are new: the simultaneous homogenisation of an entire network, the objective selection of the degrees of freedom of the adjustments and of the temporal averaging scale of the correction model. This new method will be applied to homogenise the temperature datasets of the International Surface Temperature Initiative. This large dataset necessitates an automatic homogenisation method. To validate the method, we will generate an artificial climate dataset with known inhomogeneities. To be able to generate such a validation dataset with realistic inhomogeneities, we need to understand the nature of inhomogeneities in daily data much better. Therefore, we intend to collect and study parallel measurements (two set-ups at one location), which allow us to study the changes in the frequency distribution if one set-up is replaced by the other. Finally, we will study and quantify the uncertainties due to persistent errors remaining in the dataset after homogenisation and utilise this to improve the accuracy of the homogenisation algorithm. The knowledge of uncertainties is also indispensable for climatologists using the homogenised data.

Der Einfluss von Habitatfragmentierung und Landschaftsstruktur auf die Diversität, Abundanz und Populationsdynamik von Bienen, Wespen und ihren Gegenspielern auf Streuobstwiesen

Die Diversität, Abundanz und Populationsdynamik von Bienen, Wespen und ihren Gegenspielern sollen auf 45 Streuobstwiesen unterschiedlicher Größe, Bewirtschaftung und Landschaftseinbindung über einen Zeitraum von 3 Jahren untersucht werden. Die Aufstellung von insgesamt 540 Nisthilfen für Bienen und Wespen und die jährliche Auswertung der angelegten Nester erlauben Aussagen zur Artenvielfalt und Häufigkeit sowie zur Populationsentwicklung der einzelnen Arten, zu stadienspezifischen Mortalitätsraten, zu Parasitierungsraten und zum Artenspektrum von Gegenspielern sowie dem resultierenden Reproduktionserfolg. Die Landschaftsstruktur wird in acht Radien von 250m bis 3000m um die Streuobstwiesen mit einem Geographischen Informationssystem (GIS) erfasst. Die Bedeutung der Habitatgröße und der Landschaftsstruktur auf unterschiedlichen räumlichen Skalen für die Populationsdynamik kann so getestet werden. Zur Bewertung der Habitatqualität wird der Baumbestand, der Totholzanteil, die Vegetationsstruktur und das Blütenangebot erfasst, um Aussagen zur relativen Bedeutung von Ressourcenverfügbarkeit (Nistmöglichkeiten und Pollenquellen) und Regulation durch Gegenspieler für die Populationsentwicklung auf den Streuobstwiesen zu erhalten. Die Analyse von Pollenproben ermöglicht Aussagen zur Ressourcennutzung und zur relativen Bedeutung der Streuobstwiesen und der umgebenden Landschaft als Nahrungsquelle. Detaillierte Auswertungen und Experimente mit Osmia rufa beinhalten die Entfernung der Gegenspieler an 15 Standorten, die Bestimmung von Kokongewichten und Geschlechterverhältnissen und die individuelle Markierung und Beobachtung schlüpfender Weibchen zur Ermittlung von Sammelzeiten und Ansiedlungsraten.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt A 01: Effekte von Mikropartikeln auf aquatische Modellmakrofauna in Abhängigkeit von Partikeleigenschaften: Vergleich von Mikroplastik zu natürlichen Partikeln

In Teilprojekt A01 werden an den limnischen Organismen Wasserfloh (Daphnia) und der Zebramuschel (Dreissena polymorpha) Effekte von Mikroplastik (MP) mit unterschiedlichen physikalischen und chemischen Materialeigenschaften im Vergleich zu natürlich vorkommendem partikulärem Material untersucht. Die Organismen wurden gewählt, da Wasserflöhe und Muscheln eine wichtige Rolle im aquatischen Nahrungsnetz spielen und beide als Filtrierer einer steten partikulären Fracht ausgesetzt sind, und somit ein erhöhtes Risiko haben im Wasser befindliches MP unselektiv zu ingestieren. Bei Daphnia werden klassische Lebenszyklusmerkmale, wie Mortalitätsrate, Wachstum und Anzahl der Nachkommen, sowie bei D. polymorpha das Verhalten und Stressmarker gemessen. Um die biologischen und biochemischen Mechanismen der MP-Effekte auf diese Organismen zu verstehen, werden die Transkriptome und Darmmikrobiome MP-exponierter Tiere analysiert und mit entsprechenden Kontrollen verglichen. Da Proteine eine zentrale Rolle in essentiellen Stoffwechselwegen und Signalkaskaden spielen, werden im Modellorganismus Daphnia zusätzlich MP-Effekte in einem holistischen und einem gewebespezifischen Ansatz auf der Ebene des Proteoms detailliert untersucht. Die erhaltenen Daten werden erheblich zur Aufklärung der Mechanismen negativer MP-Effekte auf diese Organismen beitragen.

Emmy Noether-Nachwuchsgruppen, Development and risk assessment of transgenic environmentally-friendly insect pest control methods for fruit flies and mosquitoes

Various species of pest insects cause substantial damage to agriculture every year, or transmit deadly diseases to animals and humans. A successful strategy to control pest insect populations is based on the Sterile Insect Technique (SIT), which uses the release of mass-reared, radiation sterilized male insects to cause infertile matings and thus reduce the pest population level. However, irradiation is not applicable to every insect species. Thus, new strategies based on genetic modifications of pest insects have been developed or are currently under investigation.The goal of the proposed research is to improve the development and ecological safety of genetically engineered (GE) insects created for enhanced biological control programs, including the SIT and new strategies based on conditional lethality. A major concern for GE insect release programs is transgene stability, and maintenance of their consistent expression. Transgene loss or intra-genomic movement could result in loss of strain attributes, and may ultimately lead to interspecies movement resulting in ecological risks. To address potential transgene instability, a new transposon vector that allows post-integration immobilization will be tested in the Mediterranean, Mexican and Oriental fruit fly tephritid pest species. In addition, the system will be established in the mosquito species Aedes and Anopheles - carriers of dengue and malaria.Random genomic insertion is also problematic for GE strain development due to genomic position effects that suppress transgene expression, and insertional mutations that negatively affect host fitness and viability. Diminished transgene expression could result in the unintended survival of conditional lethal individuals, or the inability to identify them. To target transgene vectors to defined genomic insertion sites having minimal negative effects on gene expression and host fitness, a recombinase-mediated cassette exchange (RMCE) strategy will be developed that. RMCE will also allow for stabilization of the target site, will be tested in tephritid and mosquito species, and will aid to the development of stabilized target-site strains for conditional lethal biocontrol. This will include a molecular and organismal evaluation of an RNAi-based lethality approach. Lethality based on an RNAi mechanism in the proposed insects would increase the species specificity and having multiple targets for lethality versus one target in existing systems. By seeking to improve transgene expressivity and stabilization of transposon-based vector systems, this proposal specifically addresses issues related to new GE insects by reducing their unintended spread after field release, and by limiting the possibilities for transgene introgression.

CoralRepro

1 2 3 4 5100 101 102