Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
The project is part of the COST action FP0603 Forest models for research and decision support in sustainable forest management (http://www.cost.esf.org/index.php?id=143&action number=FP0603) which aims at extending the scope of forest models from growth only to population dynamics and ecophysiology. Rationale: For sustainable forest management over large areas and for simulating different forest functions especially under changing conditions, different aspects of the system forest' must be modelled jointly: ecophysiological/biogeochemical processes, population dynamics, spatial interactions, and horizontal/vertical species stand structure. We develop a forest model with a stand-size grain suitable to be applied on large areas for assessment of, e.g., climate change or management effects on forest functions. This is achieved by merging and if necessary up- and down-scaling model functions of ecophysiological and population dynamical processes contained in existing models (single tree physiology, local scale ecophysiological, empirical forest growth, spatio-temporal forest landscape, and dynamic global vegetation models). Drought is predicted to occur more frequently with climate change, thus the main focus is on drought and the mechanisms how it affects the trees. Research questions: What are the mechanisms by which drought affects trees? Which is the best (sufficiently accurate and efficient) way to model and simulate these mechanisms? How can population dynamics and ecophysiology be combined in a landscape scale model concerning - allocation of water and carbohydrates to trees and organs? - spatial heterogeneity of soil water and trees? Methods: The project builds on the climate-driven forest landscape model TreeMig (Lischke et al., 2006). Process descriptions from various existing models are compiled, evaluated and included into TreeMig. This involves a thorough scaling of process formulations. Drought effects, involving soil water balance, stomata regulation, photosynthesis, CO2 fertilization effects, allocation of carbohydrates, dynamics of reserve pools and the relationship between these and regeneration, growth and mortality are studied in literature and other models and included into MEPHYSTO.
Inhaltliche Herangehensweise Der Berliner Ansatz der Bewertung der Umweltgerechtigkeit beruht im Wesentlichen auf der Auswertung und Aggregation vorhandener Daten. Er ist als zweistufiges Verfahren mit fünf Kernindikatoren: Lärmbelastung Luftbelastung Thermische Belastung Grün- und Freiflächenversorgung Soziale Benachteiligung und drei die Einzelbewertungen zusammenführenden Mehrfachbelastungskarten: Mehrfachbelastungskarte Umwelt Mehrfachbelastungskarte Umwelt und Soziales und Berliner Umweltgerechtigkeitskarte konzipiert. „Bei der Zusammenführung der verschiedenen Datenquellen sind drei besondere Herausforderungen auszumachen: Die sektoralen Daten unterscheiden sich in ihrer jeweiligen Methodik, in ihrer räumlichen Auflösung und Darstellung sowie in der Häufigkeit, mit der sie aktualisiert werden. Als kleinste Analyseeinheit für den Umweltgerechtigkeitsatlas wurde der stadtentwicklungspolitische Planungsraum aus dem System Lebensweltlich orientierter Räume gewählt, auf den die sektoralen Daten dann umgerechnet wurden. So konnte die heterogene Datenlage für die Zwecke dieser Analyse harmonisiert und integriert werden. Gleichzeitig ist der Detailierungsgrad der ursprünglichen Daten abgeschwächt. Eine genauere Betrachtung der Ausgangsdaten ist aber jeweils möglich“. (SenMVKU 2025, S. 6) In einem ersten Schritt des Analyseverfahrens wurden die Daten zu den drei Kernindikatoren Luft-, Lärm- und Thermische Belastung analysiert und entsprechend dem gesundheitlichen Belastungsrisiko einheitlich als „hoch“, „mittel“, oder „gering“ belastet eingestuft. Die Einstufung des Kernindikators “Grün- und Freiflächenversorgung” erfolgte in Anlehnung an Kennwerte des Deutschen Städtetags und der Kernindikator “Soziale Benachteiligung” ausgehend vom Monitoring Soziale Stadtentwicklung 2023. Im zweiten Schritt wurden die individuellen monothematischen Kernindikatoren-Karten zusammengeführt, um die Verteilung bzw. Überlagerung der Umweltbelastungen („Integrierte Mehrfachbelastungskarte Umwelt“) sowie der Umweltbelastungen einschließlich der Sozialen Benachteiligung („Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung“) darzustellen. Die beiden Karten zeigen auf der Ebene der Planungsräume die Spannbreite von PLR ohne starke Belastung auch nur eines der Kernindikatoren bis zu den PLR mit 4-fach- bzw. 5-fach-Belastungen (vgl. Abb. 2). Damit wurde für jeden Planungsraum der Mehrfachbelastungsfaktor durch Summierung derjenigen Kernindikatoren ermittelt, die der Kategorie 3 („niedrig“/“schlecht“/“hoch”)) zugeordnet wurden. Anzahl und Verteilung der mehrfach belasteten Räume sowie die verursachenden Belastungen sind somit nachvollziehbar und transparent. Diese Statusbestimmung durch das zweistufige Berliner Umweltgerechtigkeitsmonitoring stellt somit einen Überblick über die Umweltqualität in den 542 Planungsräumen der Stadt zur Verfügung. Als Lärm werden Schallereignisse beschrieben, die durch ihre individuelle Ausprägung als störend und/oder belastend für Wohlbefinden und Gesundheit wahrgenommen werden. Lärm kann insbesondere im städtischen Raum als ein zentraler, die Gesundheit beeinträchtigender Faktor benannt werden. Lärmimmissionen können je nach Expositionsumfang, -zeitraum und -dauer direkte und indirekte gesundheitliche Wirkungen nach sich ziehen. “Die Datenbasis für die Angaben zur Lärmbelastung der Planungsräume sind die Strategischen Lärmkarten für den Ballungsraum Berlin für das Jahr 2022, welche entsprechend den Anforderungen der 34. Bundes-Immissionsschutzverordnung und europarechtlichen Vorgaben erarbeitet wurden. Gemäß § 47c BImSchG sind Lärmkarten alle fünf Jahre zu überprüfen und bei Bedarf zu aktualisieren. Darauf aufbauend wurde eine Gesamtverkehrslärmkarte erstellt, die die Verkehrslärmquellen Straßen-, U-Bahn- (soweit oberirdisch) und Straßenbahnverkehr, Eisenbahnverkehr/S-Bahn- und Flugverkehr beinhaltet. Vorrangiges Ziel bei der Erstellung von Lärmkarten und der daraus resultierenden Lärmaktionsplanung ist die Minderung gesundheitsrelevanter Lärmbelastungen durch Reduzierung der Verkehrslärmemissionen. Dies trägt nicht nur zu einer besseren Wohnqualität in der Stadt bei, es erhöht auch die Aufenthaltsqualität in den Stadträumen. Gemäß der Lärmwirkungsforschung steigt ab einer Dauerbelastung von 55 dB(A) nachts und 65 dB(A) tags das Risiko von Herz-Kreislauf-Erkrankungen durch chronischen Lärmstress. Die Strategische Lärmkarte umfasst 3.799.922 Immissionspunkte im gesamten Untersuchungsgebiet, die an Gebäudefassaden in vier Meter Höhe über Grund angeordnet sind und daher als Fassadenpegel bezeichnet werden. Zu jedem dieser Immissionspunkte gehört ein Datensatz, der neben der definierten Position den LDEN (den Mittelwert über 24 Stunden), den LN (Nachtwert von 22:00 bis 6:00 Uhr) der verschiedenen zu modellierenden Verkehrslärmquellen sowie die dem jeweiligen Immissionspunkt zugeordnete Zahl an Einwohnenden enthält. Um die ermittelten Mittelwerte je Planungsraum den drei Bewertungskategorien „Belastung gering, mittel, hoch“ zuzuordnen, fand eine quartilsbezogene Unterteilung statt. Die besten 25% der Werte wurden von allen personen- und planungsraumbezogenen Mittelwerten bis 47,43 dB(A) eingenommen, die schlechtesten 25% lagen über dem Schwellenwert von 51,58 dB(A) (vgl. Abb. 3).“ (SenMVKU 2025, S. 8) Zur Bewertung der Luftbelastung gelten die drei Schadstoffe Feinstaub (PM 2,5 PM 10 ) und Stickstoffdioxid (NO 2 ) trotz der erreichten immissionsmindernden Erfolge (vgl. Umweltatlas-Karte 03.12.1 Langjährige Entwicklung der Luftqualität ) weiterhin als gesundheitlich relevant und wurden daher auch in diesem Kontext zur Bewertung herangezogen. „Die Jahresmittelwerte 2023 der Konzentration von Feinstaub (PM 10 , PM 2,5 ) und Stickstoffdioxid (NO 2 ) lieferten die Basis, um die Luftbelastung der 542 Planungsräume zu kategorisieren. Grundlage der Abschätzung der Luftschadstoffbelastung in Berlin waren die für das Jahr 2023 gemessenen Jahresmittelwerte der NO2-Konzentrationen an über 40 Messorten und der PM 2,5 - und PM 10 -Konzentrationen an 12 Messorten. Die Daten werden jährlich aktualisiert. Die Messwerte wurden rechnerisch auf das gesamte Berliner Gebiet übertragen. Hierzu wurden die Messwerte anhand einer Landnutzungs-Regressionsanalyse statistisch auf ein regelmäßiges 50-Meter-Raster interpoliert. Anschließend wurden die Mittelwerte entsprechend den jeweiligen Quartilen (analog zum Kernindikator Lärmbelastung) in drei Kategorien unterteilt: hoch, mittel und gering. Die Quartile NO 2 der aktuellen Berechnung liegen bei 12,9 µg/m³ (25 %-Quantil) und 17,8 µg/m³ (75%-Quantil) (vgl. Abb. 4). In einem letzten Schritt wurden die Werte für NO2, PM2,5 und PM10 zu einer Gesamtbewertung kombiniert. Dabei bestimmte die höchste Kategorie aller drei Luftschadstoffe die endgültige Bewertung des Planungsraums.“ (SenMVKU 2025, S. 9) „Die thermische Belastung bezeichnet den negativen Einfluss auf den Körper, der im Sommer durch Hitze entsteht und so zu Unwohlsein oder gesundheitlichen Beeinträchtigungen führen kann. Angesichts des globalen Klimawandels kommt es auch in Berlin zu einer Zunahme von Hitze mit unterschiedlichen gesundheitlichen Auswirkungen, die sich insbesondere bei älteren Menschen in einer vorzeitigen Sterblichkeit oder bei Schwangeren in Frühgeburten auswirken können. Kleinräumige Daten zum Hitzestress werden durch die gesamtstädtische Klimamodellierung 2022 im Land Berlin in Form von Rasterwerten in der Auflösung von 10 mal 10 Metern bereitgestellt. Zur Bewertung der thermischen Belastung am Tage wird der Bewertungsindex PET (Physiologisch Äquivalente Temperatur) herangezogen, der in Wissenschaft und Technik (siehe VDI Richtlinie VDI 3787 Blatt 2: Umweltmeteorologie) angewendet wird. Der PET berücksichtigt die relevanten auf den Körper wirkenden thermischen Einflussfaktoren, die in Grad Celsius (°C) angegeben und in Belastungs-stufen eingeteilt werden. Eine wichtige PET-Einflusskomponente ist die Wirkung der Sonneneinstrahlung. Da diese in der Nacht entfällt, wird zur Bewertung der nächtlichen bioklimatischen Belastung die modellierte Lufttemperatur herangezogen. Der Tag und die Nacht werden in einer Gesamtbewertung zusammengeführt. Für die Bewertung der Wärmebelastung wurden die Mittelwerte der Ausgangsraster pro Blockteil- beziehungsweise Straßenfläche genutzt: für die Tagsituation diejenigen des Bewertungsindex PET in 2 Metern Höhe um 14:00 Uhr in der Einheit °C sowie für die Nachtsituation diejenigen der Lufttemperatur, ebenfalls in 2 Metern Höhe in °C, jedoch bezogen auf den Zeitpunkt 4:00 Uhr. Damit standen Ausgangswerte für rund 23.700 Blockteilflächen und etwa 22.100 Straßenflächen zur Verfügung. Feste Grenzwerte des PET für die Kategorisierung der Tagsituation beruhen auf folgenden Vorgaben: günstig: unter 29°C / weniger günstig: über 29°C bis unter 35°C / un-günstig: über 35°C bis unter 41°C / sehr ungünstig: über 41°C. Im Gegensatz zur Tagsituation ist die Basis der Kategorisierung der Nachtsituation der Mittelwert der Lufttemperatur um 4 Uhr morgens. Analog zum PET-Wert wurde auch die Lufttemperatur den genannten vier ordinalen Klassen zugeordnet: günstig: unter 17°C / weniger günstig: über 17°C bis unter 18°C / ungünstig: über 18°C bis unter 19°C / sehr ungünstig: über 19°C. Für die Gesamtbewertung auf der Ebene der Blockteilflächen wurden die Kategorien der Tag- und Nachtsituation verknüpft, das heißt, es wurden für alle vorkommenden Kombinationen der Tag- und Nacht-Kategorien „wenn-dann-Beziehungen“ festgelegt, die die abschließende Klassen-Einstufung bestimmen. Für den finalen Arbeitsschritt – die Gesamtwertung auf der Ebene der 542 Planungsräume – wurden die im vorhergehenden Schritt befüllten Kategorien flächengewichtet aggregiert. Auf diese Weise entstanden flächengewichtete Mittelwerte der vier Kategorien für alle Planungsräume. Um den Kernindikator thermische Belastung entsprechend dem Berliner Umweltgerechtigkeitsansatz bewerten zu können, ist eine abschließende Kategorisierung der ermittelten Werte auf eine dreistufige Skala notwendig: Dazu wurden die flächengewichteten Mittelwerte der vier Kategorien in drei gleich große Intervalle aufgeteilt. Damit gibt diese Skala eine Einteilung der Planungsräume in eine hohe, mittlere und geringe Belastung wieder.“ (SenMVKU 2025, S. 10) „Grünflächen entlasten die Gesundheit in doppelter Hinsicht: Sie reduzieren die Belastung durch Schadstoffe und Hitze und bieten gleichzeitig Raum und Gelegenheit für Erholung und Bewegung. Im Indikator wird diese Ressource invers berücksichtigt: Nicht ihr Vorhandensein gilt als Entlastungs-, sondern ihr Fehlen als Belastungshinweis. Grundlage für die Indikatorenberechnung waren die Bestandsanalyse Versorgung mit öffentlichen wohnungsnahen Grünanlagen in Verbindung mit dem Programmplan Erholung und Freiraumnutzung im Landschaftsprogramm Berlin. Der Versorgungsanalyse für Berlin liegen Richtwerte des deutschen Städtetags zugrunde. Gemäß diesen Richtwerten sollten sechs Quadratmeter pro Person für wohnungsnahe Freiräume (mindestens 0,5 Hektar, höchstens 500 Meter entfernt) und sieben Quadratmeter pro Person für siedlungsnahe Freiräume (mindestens zehn Hektar, hächstens 1.500 Meter entfernt) zur Verfügung stehen. Die komplexe Methodik der Versorgungsanalyse kann an dieser Stelle nicht im Detail erläutert werden, ist aber in der Umweltatlaskarte 06.05 Versorgung mit wohnungsnahen, öffentlichen Grünanlagen 2020 ausführlich beschrieben. Sie mündet in einer blockweisen Zuordnung zu vier Dringlichkeitsstufen. Diese blockspezifischen Dringlichkeitsstufen wurden unter Berücksichtigung der jeweiligen Bevölkerungszahl auf die Planungsräume aggregiert. Im Ergebnis wird erneut eine Einordnung in drei Kategorien vorgenommen: von sehr gut / gut über mittel bis schlecht / sehr schlecht / nicht versorgt. Ausschlaggebend waren damit nur die verfügbaren Grünflächen und die Bevölkerungszahl; die Ausstattungsqualität der Grünflächen blieb unberücksichtigt.“ (SenMVKU 2025, S. 11) Grundlage zur Bewertung waren die Ergebnisse des stadtweiten Monitorings Soziale Stadtentwicklung (MSS), durch das seit 1998 im Rahmen eines kontinuierlichen, alle 2 Jahre fortgeschriebenen „Stadtbeobachtungssystems“ die soziale Lage der Bevölkerung auf der Ebene der Planungsräume ausgewertet und bereitgestellt wird. Aktuelle und frühere Ergebnisse des MSS stehen im Geoportal des Landes Berlin online zur Verfügung. Basis dieses Kernindikators war die Ausgabe 2023 dieses Monitorings. „Kern des Monitorings Soziale Stadtentwicklung sind aktuell vier Index-Indikatoren, die soziale Ungleichheit auf Ebene der Planungsräume beschreiben. Diese sind der Anteil Arbeitslosigkeit (nach SGB II), der Anteil Transferbezug der Nicht-Arbeitslosen (nach SGB II und XII) und der Anteil Kinderarmut (Transferbezug SGB II der unter 15-Jährigen) sowie – neu – der Anteil Kinder und Jugendliche in alleinerziehenden Haushalten“. (SenMVKU 2025, S. 11) „Für den Umweltgerechtigkeitsatlas wurde der Status-Index zugrunde gelegt: Je höher die Anteile von Arbeitslosigkeit, Empfang von Transferleistungen und Kinderarmut in den Planungsräumen, desto niedriger fällt deren Status-Index aus. Die Dynamik dieser Bereiche wird hierfür nicht betrachtet. Die Kategorien „niedrig“ und „sehr niedrig“ wurden zur besseren Vergleichbarkeit mit anderen Kernindikatoren zusammengefasst. Planungsräume mit weniger als 300 Einwohnenden werden von der Indexberechnung ausgeschlossen, um kleinräumige Verzerrungen zu vermeiden (im Monitoring Soziale Stadtentwicklung 2023 betraf dies fünf Planungsräume).“ (SenMVKU 2025, S. 11) Umweltgerechtigkeit kann nur als ein multidimensionales Thema betrachtet werden, es bedarf der integrierten Analyse und zusammenführenden Darstellung verschiedener Umweltbelastungen, aber auch von Umweltressourcen in ihrer sozialräumlichen Verteilung. Im Ergebnis des zweistufigen Umweltgerechtigkeitsmonitorings wurden folgende (integrierte) Mehrfachbelastungskarten erarbeitet (vgl. Abb. 2): „Integrierte Mehrfachbelastungskarte Umwelt“ , sie zeigt die vier umweltbezogenen Mehrfachbelastungen (Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung) „Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung“ , sie erweitert die erste Karte um den 5. Kernindikator Soziale Benachteiligung „Berliner Umweltgerechtigkeitskarte 2023/2024“ , sie stellt neben den fünf Kernindikatoren noch die Betroffenheit (Anzahl der Einwohnerinnen und Einwohner in den Planungsräumen) sowie den Status der Wohnlage dar. „Wie sind die Umweltbelastungen in Berlin verteilt? Die vier Kernindikatoren, Luft-, Lärm-, thermische Belastung und Grünflächenversorgung kumuliert ergeben die „ Integrierte Mehrfachbelastungskarte Umwelt “. Sie zeigt für die Planungsräume der Stadt, wie viele der Umweltindikatoren in die jeweils schlechteste Kategorie fallen und identifiziert damit Räume mit mehrfach hoher Umweltbelastung.“ (SenMVKU 2025, S. 24) Um die räumliche Konzentration der Belastung durch Umweltfaktoren bei gleichzeitiger sozialer Beeinträchtigung zu visualisieren, wurde die Mehrfachbelastungskarte Umwelt um die Komponente der sozialen Benachteiligung („niedriger Statusindex“) erweitert („ Integrierte Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “). Nicht berücksichtigt werden können mit dem bisherigen Ansatz die individuelle Exposition und Vulnerabilität des/der Einzelnen, also zum Beispiel physiologische Faktoren (etwa genetische Disposition, Stoffwechsel) sowie das individuelle Gesundheitsverhalten. Daher „kann eine Exposition trotz gleicher Intensität zu unterschiedlichen gesundheitlichen Wirkungen führen. Verantwortlich hierfür ist die individuelle Vulnerabilität, die den sogenannten Expositionseffekt modifizieren kann.“ ( BZgA online 2024 ). „Die „ Berliner Umweltgerechtigkeitskarte 2023/2024 “ ergänzt die Darstellung der „ Integrierten Mehrfachbelastungskarte Umwelt und Soziale Benachteiligung “ um die Bevölkerungsdichte. Außerdem sind in ihr Planungsräume markiert, in denen eine überwiegend einfache Wohnlage mit einer sehr hohen Luft- und/oder Lärmbelastung zusammenfällt.“ (SenMVKU 2025, S. 26) Der Berliner Umweltgerechtigkeitsansatz konzentriert sich auf die Lebensbereiche und Wohnorte der Bewohnerinnen und Bewohner. Gebiete außerhalb der Siedlungsräume wie die Wälder, großen Park- und Freizeitanlagen sowie Flächen, die als Arbeitsstätten genutzt werden, besitzen im gesamtstädtischen Kontext ebenfalls wichtige Funktionen, werden aber in den Umweltgerechtigskarten ausgeblendet. Zu diesem Zweck überlagert die Kartenebene „weitgehend unbewohnte Flächen“ die Gesamtdarstellungen. „Wird Berlin umweltgerechter? Diese Frage liegt bei der Aktualisierung des Umweltgerechtigkeitsatlas nahe, denn ein zentrales Anliegen bei Fortschreibungen ist die Frage, ob sich die Situation im Zeitverlauf verändert hat – ob Berlin also umweltgerechter geworden ist. Ein solcher Vergleich kann Hinweise auf Wirkungen politischer Maßnahmen und Entwicklungen im Stadtgefüge geben. Aufgrund der hier beschriebenen methodischen Anpassungen und veränderten Datengrundlagen lasst sich diese Frage derzeit jedoch nicht beantworten. Der Umweltgerechtigkeitsatlas stellt vielmehr eine Momentaufnahme dar: Er zeigt die aktuelle Verteilung von Umweltbelastungen und sozialer Benachteiligung innerhalb Berlins – stets im relativen Vergleich der Planungsraume zueinander. Die folgenden Abschnitte erläutern, warum die Abbildung einer Trendentwicklung methodisch nicht möglich ist und was bei der Interpretation der Karten zu beachten ist. Grundlage für die Integrierte Mehrfachbelastungskarte und Berliner Umweltgerechtigkeitskarte sind Daten der Kernindikatoren Luft, Lärm, thermische Belastung und Grünflächenversorgung sowie Daten des Monitoring Soziale Stadtentwicklung. Teilweise werden diese Daten gemessen, teilweise errechnet, teilweise werden verschiedene Datenquellen miteinander verschnitten. Die Daten dieser fünf Kernindikatoren werden dann übereinandergelegt und um die Informationen der Wohnlage und der Bevölkerungsdichte ergänzt. Es handelt sich um Daten, die einer vorgegebenen Art der Erhebung sowie Periodizität unterliegen. Diese generelle Systematik des Umweltgerechtigkeitsatlas macht es notwendig, auch auf die Grenzen der Aussagekraft der hier berichteten Werte hinzuweisen, um Interpretationsfehlern und Missverständnissen vorzubeugen. Im Mittelpunkt des Interesses dieses Monitorings steht der Gerechtigkeitsaspekt und damit die Frage, wie sich die Belastung der Gebiete in Berlin im Vergleich zueinander verhält. Nach aktueller Herangehensweise ist es nicht möglich, die Ergebnisse über die Zeit hinweg zu vergleichen: Dies liegt sowohl an kleineren Anpassungen in der Berechnung und Klassifizierung der Indikatoren als auch an der statistischen Zusammenfassung der Daten. Dies ist auch darin begründet, dass sich die Methodik zur Messung von Umweltqualität und sozialer Lage ständig weiterentwickelt und dadurch aussagekräftiger wird.“ (SenMVKU 2025, S. 12) „Um die einzelnen Indikatoren zusätzlich zur Umweltgerechtigkeitsanalyse separat und absolut zu vergleichen, sollten die Daten des Geoportals und des Umweltatlas herangezogen werden: Diese Daten geben ein detaillierteres Bild der Belastungen in Berlin. In diesem Monitoring liegt der Schwerpunkt auf einer kombinierten und ganzheitlichen Darstellung. Dies vermittelt ein besseres Verständnis der relativen Ungleichheit und des Zusammenspiels der Belastungsquellen, als es die Umweltdaten isoliert betrachtet ermöglichen.“ (SenMVKU 2025, S. 13)
Die frei fließenden und staugeregelten Flüsse unter den Bundeswasserstraßen sind für die Fische wichtige Verbindungsgewässer zwischen den Habitaten im Meer und an den Flussoberläufen. Fische, die große Distanzen zurücklegen, orientieren sich an der Hauptströmung und werden deshalb an Staustufen entweder zum Kraftwerk oder zum Wehr geleitet. Dort gibt es keine Möglichkeit mehr, aufwärts zu wandern, wenn nicht in der Nähe der Wehr- oder Kraftwerksabströmung eine funktionierende Fischaufstiegsanlage vorhanden ist. Da Schiffsschleusen keine kontinuierliche Leitströmung erzeugen, werden sie von den Fischarten, die der Hauptströmung folgend lange Distanzen zurücklegen, nicht gefunden. Arten, die auf ihrer Wanderung nicht der Hauptströmung folgen, können auf- oder abwandern, wenn sie eine offene Schleusenkammer vorfinden. Flussabwärts: Fische vor Kraftwerken schützen und vorbeileiten: An Staustufen ohne Wasserkraftanlagen ist die abwärts gerichtete Wanderung über ein Wehr hinweg in der Regel unproblematisch. Voraussetzung: Das Wehr ist in Betrieb, die Fallhöhe beträgt nicht mehr als 13 Meter und im Tosbecken ist eine Wassertiefe von mindestens 0,90 Metern vorhanden. Dagegen können bei Abwanderung durch eine Kraftwerksturbine leichte bis tödliche Verletzungen auftreten. Diese turbinenbedingte Mortalität ist von der Fischart und der Körperlänge der Tiere sowie von Turbinentyp und -größe, der Fallhöhe und den jeweiligen Betriebsbedingungen abhängig. Um hier einen gefahrlosen Fischabstieg zu gewährleisten, sind die Betreiber von Wasserkraftanlagen nach Wasserhaushaltsgesetz verpflichtet, die Wasserkraftanlagen mit geeigneten Maßnahmen zum Schutz der Fischpopulation (z. B. mit Feinrechen und einem Bypass am Kraftwerk vorbei ins Unterwasser) aus- bzw. nachzurüsten. Flussaufwärts: Hier helfen nur Fischaufstiege: Verschiedene Untersuchungen der Durchgängigkeit an Rhein, Mosel, Main, Neckar, Weser, Elbe und Donau haben gezeigt, dass zwar ein großer Teil der Staustufen mit Fischaufstiegsanlagen ausgestattet ist, diese für die aufstiegswilligen Fische jedoch schwer zu finden oder zu passieren sind. Im Mai 2009 stimmten die Bundesanstalt für Wasserbau (BAW) und die Bundesanstalt für Gewässerkunde (BfG) gemeinsam mit dem Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS heute: Bundesministerium für Verkehr und digitale Infrastruktur, BMVI) folgendes Rahmenkonzept für die erforderlichen Arbeiten ab: - Aufstellung fachlicher Grundlagen, insbesondere zu fischökologischen Dringlichkeiten - Fachliche Beratung der WSV sowie Schulungen - Forschungs- und Entwicklungsprojekte für die Erstellung eines technischen Regelwerks, und - Standardisierung der Anforderungen und Ausführung von Fischaufstiegs-, Fischschutz- und Fischabstiegsanlagen. (Text gekürzt)
Wachstum und Mortalität des Feinwurzelsystems hängen von vielen abiotischen Faktoren wie Nährstoff-, Wasser- und Sauerstoffversorgung ab. Neben diesen Faktoren kann die Ozonbelastung der oberirdischen Pflanzenteile zur Verringerung des Wurzelwachstums führen. Im Zusammenhang mit der zentralen Hypothese des SFB 607, dass 'Steigerung der Stresstoleranz zu Einschränkungen im Wachstum und Konkurrenzverhalten führt', sollen folgende Fragen beantwortet werden: 1. Wie eng ist der Zusammenhang zwischen Dynamik des Feinwurzelsystems und den abiotischen Faktoren im Wurzelraum? 2. Welchen Einfluss hat darüber hinaus doppelt ambiente Ozonkonzentration im Kronenraum auf die Dynamik des Feinwurzelsystems? 3. Wie verändert sich die Feinwurzeldynamik der Jungbäume unter interspezifischer Konkurrenz und bei zusätzlichem Phytophthora-Befall? Die Dynamik des Feinwurzelsystems wird mit Hilfe von Minirhizotronen mit gekoppelter TDR-, Sauerstoff- und Temperatursensoren und Minisaugkerzen erfasst. Die Auswertung der Feinwurzelaufnahmen erfolgt lagegenau anhand der entzerrten digitalen Bilder mit einem geographischen Informationssystem. Die so analysierten Daten gewinnen aufgrund ihres Raumbezuges eine höhere Aussagekraft gegenüber bisherigen Rhizotronuntersuchungen. Neben der Beantwortung der obigen Fragen liefert das Vorhaben auch eine wichtige Datengrundlage für mehrere Teilprojekte des SFB 607 'Wachstum und Parasitenabwehr'.
Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
Im Anschluss an eine oekologische Aggregatstudie ueber die Mortalitaet in den einzelnen Stadtbezirken Mannheims im Rahmen einer Analyse der Krebsmortalitaet im Rhein-Neckar-Raum sollen Beziehungen zwischen Wohngebiet und Sterblichkeit an bestimmten Todesursachen untersucht werden. Die Studie dient der Untersuchung der Frage, wie lange vor dem Tode Personen am Ort des Todes, also der auf der Todesbescheinigung oder Sterbefall-Zaehlkarte angegebenen Adresse gelebt haben. Diese Untersuchung eines Dosis(=Zeitdauer)-Wirkungs-Effekts dient damit gleichzeitig der Validierung aehnlicher Aggregatstudien auf der Basis der regionalen Sterblichkeit.
Ziel: Erarbeitung neuer Messmethoden; Aufstellen von Messwertkatastern; Interpretation der Messergebnisse in bezug auf Morbiditaet und Mortalitaet.
Pathogene Legionellenarten, wie Legionella pneumophila, können die Legionärskrankheit, eine schwere Lungeninfektion mit einer Sterblichkeit von 5-10 %, verursachen. Sie werden durch das Einatmen von Legionellen-kontaminierten Aerosolen aus künstlichen Wassersystemen, wie zum Beispiel Kühltürme, Trinkwassernetzwerke und Kläranlagen, übertragen. Die Legionärskrankheit hat in Europa in der Zeit von 2015 bis 2019 um 65 % zugenommen. Es ist davon auszugehen, dass die Legionärskrankheitsfälle, die aus Kläranlagen entspringen, aufgrund der zunehmenden Wiederverwendung von Abwasser und wegen des Klimawandels weiter steigen werden. Das Letztere wird sich insbesondere auf die Abwassertemperaturen und die mikrobielle Zusammensetzung von Abwässern auswirken. Eine Lösung zur Verhinderung der Legionellenvermehrung in Kläranlagen mit warmen Abwassertemperaturen (>23 °C) steht mangels Grundlagenforschung nach unserem Kenntnisstand nicht zur Verfügung. Das Ziel dieses Antrages ist es, die Temperaturbedingungen zu definieren, die das Wachstum von pathogenen Legionella spp. aus Kläranlagen begünstigen, unter Berücksichtigung konstanter und dynamischer Temperaturverhältnisse. Dafür sollen Isolate aus behandeltem Abwasser oder Belebtschlamm von fünf verschiedenen Kläranlagen, die warme Abwässer behandeln, bei fünf verschiedenen Temperaturen zwischen 20 °C und 40 °C kultiviert werden. Um die Wirkung dynamischer Temperaturbedingung zu untersuchen, soll die Temperatur in der Mitte der exponentiellen Wachstumsphase um 5 °C innerhalb einer kurzen Zeitspanne erhöht werden. Die Wachstumsparameter der getesteten Legionellenarten sollen vor und nach der Störung verglichen werden. Aufgrund unserer Erfahrungen bei vergangenen Überwachungsprojekten von Legionella spp. in Kläranlagen wurde ein schneller Temperaturanstieg von 5 °C ausgewählt. Die isolierten Legionellenarten sollen anhand der Kultivierungsmethode aus der biologischen Behandlungsstufe gewonnen werden. Die Arten der Isolate und die Legionellendiversität in der biologischen Stufe soll durch eine gattungsspezifische Next-Generation-Sequencing identifiziert werden. Für das Temperaturexperiment werden Isolate ausgewählt, die sowohl die Kerngemeinschaft der Legionellen, die in allen fünf Kläranlagen vorhanden ist, als auch die einzigartigen Stammtypen, die nur in bestimmten Kläranlagen vorkommen, abdecken. Die Integration der Ergebnisse der Abwasser-/Kläranlagencharakterisierung, der Legionellendiversität und des temperaturabhängigen Wachstums von den Legionellenisolate wird unser Verständnis über die Rolle von Kläranlagen als ökologische Nische für das Legionellenwachstum verbessern. Unsere Erkenntnisse können verwendet werden, um die Überwachung von Legionellen in Kläranlagen zu verbessern und sie sollen die Entwicklung von Strategien zum Umgang mit plötzlichen Temperaturänderungen in Kläranlagen und Abwasserwiederverwendungsanlagen unterstützen.
| Origin | Count |
|---|---|
| Bund | 921 |
| Land | 65 |
| Wissenschaft | 40 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Daten und Messstellen | 21 |
| Ereignis | 11 |
| Förderprogramm | 461 |
| Repositorium | 1 |
| Taxon | 8 |
| Text | 406 |
| Umweltprüfung | 1 |
| unbekannt | 102 |
| License | Count |
|---|---|
| geschlossen | 166 |
| offen | 511 |
| unbekannt | 334 |
| Language | Count |
|---|---|
| Deutsch | 877 |
| Englisch | 241 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Bild | 3 |
| Datei | 31 |
| Dokument | 66 |
| Keine | 770 |
| Unbekannt | 10 |
| Webdienst | 1 |
| Webseite | 183 |
| Topic | Count |
|---|---|
| Boden | 749 |
| Lebewesen und Lebensräume | 942 |
| Luft | 730 |
| Mensch und Umwelt | 1011 |
| Wasser | 751 |
| Weitere | 1002 |