API src

Found 10 results.

Related terms

Emissionen von Wärmekraftwerken und anderen Verbrennungsanlagen

<p>Emissionen von Wärmekraftwerken und anderen Verbrennungsanlagen</p><p>Deutschland verpflichtete sich 2003 mit der Zeichnung des PRTR-Protokolls dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten in einer Datenbank für Bürgerinnen und Bürger auf.</p><p>Umweltbelastende Emissionen aus Wärmekraftwerken und anderen Verbrennungsanlagen</p><p>Wärmekraftwerke und andere Verbrennungsanlagen, die mit fossilen Brennstoffen (insbesondere Steinkohle, Braunkohle, Erdgas) oder biogenen Brennstoffen betrieben werden, sind bedeutende Verursacher von umweltbelastenden Emissionen. Sie sind verantwortlich für einen erheblichen Teil des Ausstoßes an Kohlendioxid (CO₂), Stickstoffoxiden (NOx) und Schwefeloxiden (SOx). Die Kohleverbrennung ist zudem die wichtigste Emissionsquelle für das Schwermetall Quecksilber (Hg).</p><p>Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland</p><p>Industriebetriebe müssen jährlich dem Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) sowohl über ihre Emissionen in Luft, Wasser und Boden berichten, als auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Wärmekraftwerke und andere Verbrennungsanlagen mit einer Feuerungswärmeleistung von über 50 Megawatt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MW#alphabar">MW</a>⁠), die von Anhang I, Nummer 1.c) der Europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠-Verordnung erfasst werden, betrachtet.</p><p>Das Umweltbundesamt (UBA) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister PRTR (<strong>P</strong>ollutant<strong>R</strong>elease and<strong>T</strong>ransfer<strong>R</strong>egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse<a href="https://thru.de/">https://thru.de</a>der Öffentlichkeit frei zugänglich.</p><p>Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung:</p><p>Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Energiesektor, zu dem die hier dargestellten Wärmekraftwerke und andere Verbrennungsanlagen gehören. Für das aktuelle Berichtsjahr 2023 waren in Deutschland insgesamt 130 Betriebe mit einer Feuerungswärmeleistung von mehr als 50 Megawatt (MW) und mit Luftemissionen nach PRTR berichtspflichtig (siehe Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Luftemissionen im Jahr 2023“).</p><p>Die Aussagekraft des PRTR ist jedoch begrenzt. Drei Beispiele:</p><p>Kohlendioxid-Emissionen in die Luft</p><p>Kohlendioxid (CO₂)-Emissionen entstehen vor allem bei der Verbrennung fossiler Energieträger. Somit gehören Wärmekraftwerke und andere stationäre Verbrennungsanlagen zu den bedeutenden Quellen dieses Treibhausgases. Dies ist auch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ erkennbar.<br>Nicht jeder Betreiber muss CO₂-Emissionen melden. Für die Freisetzung von CO₂ in die Luft gilt im PRTR ein Schwellenwert von 100.000 Tonnen pro Jahr (t/Jahr). Erst wenn ein Betrieb diesen Wert überschreitet, muss er dem Umweltbundesamt die CO₂-Emissionsfracht melden.In den Jahren 2007 bis 2023 meldeten jeweils zwischen 117 und 156 Betreiber von Wärmekraftwerken und andere Verbrennungsanlagen CO₂-Emissionen an das PRTR. Das Jahr 2009 fiel in der Zeitreihe hinsichtlich der freigesetzten Mengen heraus, da in diesem Jahr aufgrund der Wirtschaftskrise und der daraus folgenden geringeren Nachfrage nach Strom und Wärme weniger Brennstoffe in den Anlagen eingesetzt wurden. Der zeitweilige Anstieg der Emissionsfrachten nach 2009 ist der wirtschaftlichen Erholung geschuldet. Im Berichtszeitraum war die Zahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen im Jahr 2023 mit 117 Betrieben als auch die berichtete Gesamtemissionsfracht mit 162 Kilotonnen am niedrigsten. Von 2016 bis 2020 ging die Anzahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen sowie der Anteil der berichteten Gesamtemissionsfracht stetig zurück (siehe Abb. „Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). In den Jahren 2021 und 2022 stiegen die Einsätze von Stein- und Braunkohlen in Großfeuerungsanlagen und damit auch die CO2Emissionen wieder an. Einige Kohlekraftwerke wurden aus der Netzreserve/ Sicherheitsbereitschaft wieder in den regulären Betrieb überführt. Mit dem erhöhten Kohleeinsatz wurde während der Gaskrise teures Erdgas eingespart. Infolgedessen liefen die Erdgaskraftwerke weniger. Im Jahr 2023 ging der Kohleeinsatz in Kraftwerken wieder deutlich zurück. Hauptgründe dafür sind der verringerte Stromverbrauch, die Zunahme der Stromimporte und die erhöhte Einspeisung von erneuerbarem Strom. Das führte in der Summe zu einer merklichen Senkung der CO₂ Emissionen. Auch die Anzahl der CO₂-meldenden Kraftwerke war 2023 im Vergleich zum Vorjahr rückläufig, weil aufgrund von Stilllegungen aber vor allem wegen verringerter Volllaststunden Anlagen unter den Schwellenwert fielen.Die Frachtangaben zu CO₂ im PRTR basieren größtenteils auf Berechnungen der Betreiber. Als Grundlage dienen Brennstoffanalysen zur Bestimmung des Kohlenstoffgehaltes. CO₂ Messungen im Abgas werden nur selten vorgenommen.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft 2023“ erfasst alle 117 Betriebe, die im Jahr 2023 mehr als 100.000 Tonnen CO₂ in die Luft freisetzten. Die Signaturen in der Karte zeigen die Größenordnung der jeweils vom Betrieb freigesetzten CO₂-Menge:Stickstoffoxid-Emissionen in die LuftStickstoffoxide (Stickstoffmonoxid und Stickstoffdioxid, gerechnet als Stickstoffdioxid und abgekürzt mit NOx, schädigen die Gesundheit von Mensch, Tier und Vegetation in vielfacher Weise. Im Vordergrund steht die stark oxidierende Wirkung von Stickstoffdioxid (NO2). Außerdem tragen einige Stickstoffoxide als Vorläuferstoffe zur Bildung von bodennahem Ozon und sekundärem Feinstaub bei, wirken überdüngend und versauernd und schädigen dadurch auch mittelbar die Vegetation und den Boden. Berichtspflichtig im ⁠PRTR⁠ sind NOx-Emissionen in die Luft ab einem Schwellenwert von größer 100.000 Kilogramm pro Jahr (kg/Jahr).In den Jahren von 2007 bis 2023 ging die Anzahl Stickstoffoxid-Emissionen meldender Betriebe von 157 auf 89 Wärmekraftwerke und andere Verbrennungsanlagen zurück. Seit 2013 ist ein Rückgang der berichteten NOx-Gesamtemissionen im PRTR von 209 Kilotonnen (kt) auf 86 Kilotonnen (kt) in 2023 zu beobachten. Der auffallende niedrige Wert berichteter NOx-Gesamtemissionen iHv. 101 Kilotonnen (kt) im Jahr 2020 ist der besonderen Situation dieses Jahres geschuldet. Einerseits nahm der Stromverbrauch aufgrund der Corona-Pandemie ab und der Stromexport verringerte sich. Andererseits legte die Stromerzeugung aus erneuerbaren Energieträgern zu. Das führte in der Summe zu einem erheblichen Rückgang des Kohleeinsatzes. Im Jahr 2021 führte die wirtschaftliche Erholung und die geringe Stromerzeugung aus Windenergie zu einer Erhöhung der Brennstoffeinsätze und entsprechend zu einer Emissionssteigerung. Aufgrund der Gaskrise und der damit verbundenen Brennstoffwechsel von Gas zu Kohle und Ölprodukten kam es im Jahr 2022 nochmals zu einer Erhöhung der berichteten Gesamtemissionsfracht. Die zeitgleich erfolgte Verschärfung der NOX-Grenzwerte im Zuge der Novelle der 13. ⁠BImSchV⁠ dämpfte den Emissionsanstieg. Im Jahr 2023 sanken die NOX-Emissionen im Vergleich zum Vorjahr wieder um rund 29 %. (siehe Abb. „Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der deutliche Rückgang im Jahr 2023 lässt sich im Wesentlichen durch den verringerten Einsatz von Kohlen, Erdgas und Ölprodukten zur Stromerzeugung erklären. Die Gründe dafür sind die erhöhte Einspeisung von erneuerbarem Strom, die Erhöhung von Stromimporten und die verringerte Stromnachfrage.Die Frachtangaben zu NOxim PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft 2023“ erfasst alle 89 Betriebe, die im Jahr 2023 mehr als 100 t Stickstoffoxid (t NOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Stickstoffoxid-Mengen:Schwefeloxid-Emissionen in die LuftSchwefeloxide (wie zum Beispiel SO2, im Folgenden nur SOxgenannt) entstehen überwiegend bei Verbrennungsvorgängen fossiler Energieträger wie zum Beispiel Kohle. Schwefeloxide können Schleimhäute und Augen reizen und Atemwegsprobleme verursachen. Sie können zudem aufgrund von Ablagerung in Ökosystemen eine ⁠Versauerung⁠ von Böden und Gewässern bewirken. Der Schwellenwert für im ⁠PRTR⁠ berichtspflichtige SOx-Emissionen in die Luft beträgt größer 150.000 Kilogramm pro Jahr (kg/Jahr).In den Jahren von 2007 bis 2023 meldeten jeweils zwischen 42 und 80 Wärmekraftwerke und andere Verbrennungsanlagen Schwefeloxidemissionsfrachten. In den Jahren 2007 und 2013 war der höchste Stand der Gesamtfrachten mit jeweils 157 Kilotonnen (kt) zu verzeichnen. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen ist seit 2013 kontinuierlich rückläufig und erreichte 2020 mit 42 meldenden Betrieben den niedrigsten Stand. Das Jahr 2023 stellt mit berichteten 47 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar und liegt damit sogar noch unter dem Wert der Corona-Krise im Jahr 2020. &nbsp;2023 nahm im Vergleich zum vorangegangenen Jahr, 2022, die Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen um rund 15 % zu, der Anteil der berichteten Gesamtemissionsfracht hingegen um rund 18 % ab (siehe Abb. “Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Hauptgrund für den Emissionsrückgang im Jahr 2023 der deutlich verringerte Kohleeinsatz zur Stromerzeugung. Bemerkenswert ist, dass die Umsetzung der strengeren Grenzwerte und der höheren Schwefelabscheidegrade in der novellierten Fassung der 13. ⁠BImSchV⁠ im Jahr 2022 dazu führte, dass das Emissionsniveau trotz gestiegener Kohleeinsätze gleichblieb. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist ein Rückgang berichteter Gesamtemissionsfrachten von rund 70 % zu verzeichnen. Der Emissionsrückgang im Zeitraum 2007 bis 2023 ist, ähnlich wie bei Stickstoffoxiden, im Wesentlichen auf den sinkenden Kohleeinsatz in Wärmekraftwerken zurückzuführen. Besonders stark ging der Steinkohleeinsatz zurück, aber auch der Braunkohleeinsatz verringerte sich signifikant. Dabei verlief die Entwicklung in den einzelnen Braunkohlerevieren uneinheitlich. Aufgrund der unterschiedlichen Schwefelgehalte in den verschiedenen Revieren (rheinische Braunkohle niedriger Schwefelgehalt, mitteldeutsche Braunkohle hoher Schwefelgehalt) korreliert die Emissionsminderung nicht direkt mit der Entwicklung der Brennstoffeinsätze. Nachdem in den Jahren 2021 und 2022 aufgrund des Kernkraftausstieges und der Gaskrise wieder mehr Stein- und Braunkohle eingesetzt wurde, drehte sich diese Entwicklung im Jahr 2023 wieder um und entsprechend führte der reduzierte Kohleeinsatz zu einer deutlichen Senkung der Emissionen.Die Frachtangaben zu SOxim PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft 2023“ erfasst alle 43 Betriebe, die im Jahr 2023 mehr als 150 Tonnen Schwefeloxid (t SOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Schwefeloxid-Mengen:Quecksilber-Emissionen in die LuftDas zur Gruppe der Schwermetalle gehörende Quecksilber (Hg) wird hauptsächlich frei, wenn Energieerzeuger fossile Brennstoffe wie Kohle für die Energieerzeugung verbrennen. Quecksilber und seine Verbindungen sind für Lebewesen teilweise sehr giftig. Die stärkste Giftwirkung geht von Methylquecksilber aus. Diese Verbindung reichert sich besonders in Fischen und Schalentieren an und gelangt so auch in unsere Nahrungskette.Die Zahl der Wärmekraftwerke und anderen Verbrennungsanlagen, die Hg-Emissionen in die Luft an das ⁠PRTR⁠ meldeten, pendelte in den Jahren 2007 bis 2023 zwischen 19 und 56. Ein Betreiber muss nur dann berichten, wenn er mehr als 10 Kilogramm Quecksilber pro Jahr (kg/Jahr) in die Luft emittiert. Im Jahr 2009 gingen die Emissionen aufgrund der gesunkenen Nachfrage nach Strom und Wärme zurück. Der Anstieg der Emissionsfrachten von 2009 auf 2010 ist der wirtschaftlichen Erholung geschuldet. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen und die berichtete Gesamtemissionsfracht erreichte im Jahr 2020 mit 19 Betrieben den niedrigsten Stand innerhalb der Zeitreihe 2007 bis 2023, was den oben genannten Besonderheiten des Jahres 2020 geschuldet ist. &nbsp;Das Jahr 2023 stellt mit berichteten 2,17 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist von 2016 bis 2023 ein deutlicher Rückgang der berichteten Gesamtemissionsfrachten um rund 50 % zu verzeichnen (siehe Abb. „Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Für den Rückgang der gemeldeten Gesamtemissionsfracht bis 2023 gibt es hauptsächlich zwei Gründe: Den wesentlichen Anteil hat der deutliche Rückgang der Kohleverstromung. Weiterhin trägt die Einführung eines auf das Jahr bezogenen Quecksilbergrenzwertes dazu bei, der erstmals für das Jahr 2019 anzuwenden war, und der deutlich strenger ist als der bisherige und weiterhin parallel geltende auf den einzelnen Tag bezogene Grenzwert. Diese neue Anforderung bewirkt, dass vor allem die Kraftwerke im mitteldeutschen Braunkohlerevier – hier liegen deutlich höhere Gehalte an Quecksilber in der Rohbraunkohle vor als im rheinischen Revier – erhebliche Anstrengungen für eine weitergehende Quecksilberemissionsminderung unternehmen mussten. Infolgedessen kommt es im mitteldeutschen Revier zu einer deutlichen Minderung der spezifischen Quecksilberemissionen. Aber auch im Lausitzer Revier gingen in den Jahren 2019 und 2020 die spezifischen Quecksilberemissionen zurück. Die Gründe für den Rückgang der Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen sind zum einen Anlagenstilllegungen, aber auch der verringerte Steinkohleeinsatz in den verbliebenen Anlagen, der dazu führt, dass einige Anlagen unter die Abschneidegrenze fallen. Der Emissionsanstieg den Jahren 2021 und 2022 ist im Wesentlichen auf den, angesichts der Gaskrise, erhöhten Braun- und Steinkohleeinsatz zurückzuführen. Daraus ergibt sich auch eine höhere Anzahl der meldenden Steinkohlenkraftwerke, die den Schwellenwert überschreiten. Im Jahr 2022 wurden im Zuge der Umsetzung der BVT-Schlussfolgerungen die gesetzlichen Anforderungen nochmals deutlich verschärft. Von daher kommt es trotz einer Erhöhung des Kohleeinsatzes in Großfeuerungsanlagen von über 8 % nur zu einer leichten Zunahme der Quecksilberemissionen von 0,3 %. Im Jahr 2023 sinken die Quecksilberemissionen im Vergleich zum Vorjahr um rund 25 %. Der Hauptgrund für diese Entwicklung ist der deutlich verringerte Einsatz von Stein- und Braunkohlen zur Stromerzeugung.Der größte Teil der Betreiber ermittelt die Hg-Luftemissionen über Messungen, die meisten davon kontinuierlich. Ein Teil der Quecksilberemissionen wird aber auch über Berechnungen ermittelt, die meist auf den vorgeschriebenen Brennstoffanalysen basieren.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft 2023“ erfasst die 23 Betriebe, die nach eigenen Angaben im Jahr 2023 mehr als 10 Kilogramm Quecksilber (kg Hg) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Menge an Quecksilber:

Primärenergieverbrauch

<p>Primärenergieverbrauch</p><p>Der Primärenergieverbrauch ist seit Beginn der 1990er Jahre rückläufig. Bis auf Erdgas ist der Einsatz aller konventionellen Primärenergieträger seither zurückgegangen. Dagegen hat die Nutzung erneuerbarer Energien zugenommen. Ihr Anteil ist kontinuierlich angestiegen, besonders seit dem Jahr 2000.</p><p>Definition und Einflussfaktoren</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ (PEV) bezeichnet den Energiegehalt aller im Inland eingesetzten Energieträger. Der Begriff umfasst sogenannte Primärenergieträger, wie zum Beispiel Braun- und Steinkohle, Mineralöl oder Erdgas, die entweder direkt genutzt oder in sogenannte Sekundärenergieträger wie zum Beispiel Kohlebriketts, Benzin und Diesel, Strom oder Fernwärme umgewandelt werden. Berechnet wird er als Summe aller im Inland gewonnenen Energieträger zuzüglich des Saldos der importierten und exportierten Mengen sowie der Lagerbestandsveränderungen abzüglich der auf Hochsee gebunkerten Vorräte.</p><p>Statistisch wird der Primärenergieverbrauch über das Wirkungsgradprinzip ermittelt. Dabei werden die Einsatzmengen der in Feuerungsanlagen verbrannten Energieträger mit ihrem Heizwert multipliziert. Für Strom aus Wind, Wasserkraft oder Photovoltaik wird dabei ein Wirkungsgrad von 100 %, für die Geothermie von 10 % und für die Kernenergie von 33 % angenommen. Im Ergebnis wird durch diese internationale Festlegung für die erneuerbaren Energien ein erheblich niedrigerer PEV errechnet als für fossil-nukleare Brennstoffe. Dies hat in Zeiten der Energiewende methodenbedingte Verzerrungen bei der Trendbetrachtung zur Folge: Der Primärenergieverbrauch sinkt bei fortschreitender Substitution von fossil-nuklearen Brennstoffen durch erneuerbare Energien, selbst wenn die gleiche Menge an Strom zur Nutzung bereitgestellt wird. Dieser rein statistische Effekt überzeichnet den tatsächlichen Verbrauchsrückgang, wie die Entwicklung des<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-erneuerbare-energien">Bruttoendenergieverbrauchs</a>zeigt.</p><p>Der Anteil erneuerbarer Energien am gesamten Primärenergieverbrauch steigt dagegen unterproportional (siehe Abb. „Primärenergieverbrauch“). Es wird – rechnerisch bedingt – ein langsamerer Anstieg des Erneuerbaren-Anteils am PEV wahrgenommen. Dies kann einen geringeren Ausbaueffekt suggerieren. Diese Effekte werden umso größer, je mehr Stromproduktion aus beispielsweise Kohlekraftwerken durch erneuerbare Energien und/oder Stromimporte (ebenfalls mit Wirkungsgrad von 100 % bewertet) ersetzt werden, weil immer weniger Umwandlungsverluste in die Primärenergiebilanzierung einfließen.</p><p>Der Primärenergieverbrauch wird in erheblichem Maße durch die wirtschaftliche Konjunktur und Struktur, Preise für Rohstoffe und technische Entwicklungen beeinflusst. Auch die Witterungsverhältnisse und damit verbunden der Bedarf an Raumwärme spielen eine wichtige Rolle.</p><p>Entwicklung und Ziele</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in Deutschland ist seit Beginn der 1990er Jahre rückläufig (siehe Abb. „Primärenergieverbrauch“). Das ergibt sich zum einen aus methodischen Gründen beim Umstieg auf erneuerbare Energien (siehe Abschnitt „Primärenergieverbrauch erklärt“). Zum anderen konnten aber auch Effizienzsteigerungen beobachtet werden, zum Beispiel durch bessere Ausnutzung der in Energieträgern gespeicherten Energie (Brennstoffnutzungsgrad) in<a href="https://www.umweltbundesamt.de/daten/energie/kraftwerke-konventionelle-erneuerbare">Kraftwerken</a>, Motoren oder Heizkesseln.</p><p>Im Energieeffizienzgesetz 2023 (EnEfG) hat der Gesetzgeber festgelegt, dass der Primärenergieverbrauch bis zum Jahr 2030 um 39,3 % unter dem Wert des Jahres 2008 liegen soll. In den „<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-fuer-die-klimaschutz-energiepolitik/integrierte-energie-treibhausgasprojektionen">Treibhausgas-Projektionen 2025</a>“ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Wichtig ist dabei auch die Frage nach der zu erwartenden Entwicklung des Primärenergieverbrauchs. Das Ergebnis der Untersuchung: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem PEV von etwa 9.800 Petajoule (PJ) zu rechnen (Mit-Maßnahmen-⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Szenario#alphabar">Szenario</a>⁠). Das wäre gegenüber dem Jahr 2008 ein Rückgang von lediglich etwa 32 %. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen.</p><p>Primärenergieverbrauch nach Energieträgern</p><p>Seit 1990 hat sich der Energieträgermix stark verändert. Der Verbrauch von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ auf Basis von Braunkohle lag im Jahr 2023 um 72 %, der von Steinkohle um etwa 63 % unter dem des Jahres 1990. Der Energieverbrauch auf Basis von Erdgas stieg an: Noch im Jahr 2021 lag das Plus gegenüber dem Jahr 1990 bei 44 %. In der Folge des Krieges in der Ukraine und den daraus erwachsenden Versorgungsengpässen und der wirtschaftlichen Rezession sank der Gasverbrauch in den Jahren 2022 und 2023 gegenüber dem Jahr 2021 jedoch deutlich. Im Jahr 2023 lag der Energieverbrauch für Erdgas 14 % über dem des Jahres 1990. Der Einsatz erneuerbarer Energieträger hat sich seit 1990 mehr als verzehnfacht (siehe Abb. „Primärenergieverbrauch nach Energieträgern“).</p>

Erneuerbare und konventionelle Stromerzeugung

<p>Erneuerbare und konventionelle Stromerzeugung</p><p>Dem stetig wachsenden Anteil erneuerbarer Energien an der Bruttostromerzeugung steht ein Rückgang der konventionellen Stromerzeugung gegenüber. Erneuerbare Energien wie Wind, Sonne und Biomasse sind zusammen inzwischen die wichtigsten Energieträger im Strommix und sorgen für sinkende Emissionen.</p><p>Zeitliche Entwicklung der Bruttostromerzeugung</p><p>Die insgesamt produzierte Strommenge wird als<em>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a>⁠</em>bezeichnet. Sie wird an der Generatorklemme vor der Einspeisung in das Stromnetz gemessen. Zieht man von diesem Wert den Eigenverbrauch der Kraftwerke ab, erhält man die<em>Nettostromerzeugung</em>.</p><p>Entwicklung des Stromexportes</p><p>Importe und Exporte im europäischen Stromverbund gleichen die Differenzen zwischen Stromverbrauch und -erzeugung aus. Die Abbildung „Bruttostromerzeugung und Bruttostromverbrauch“ zeigt, dass die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a>⁠ in den Jahren 2003 bis 2022 stets größer war als der Verbrauch. Entsprechend wies Deutschland in diesem Zeitraum beim Stromaußenhandel einen Exportüberschuss auf. Im Jahr 2017 erreichte der Überschuss mit etwa 52 ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠ einen Höchststand, damals wurden 8 Prozent der Stromerzeugung exportiert. In den folgenden Jahren ging der Netto-Export zurück. Seit dem Jahr 2023 ist Deutschland wieder Nettoimporteur - mit einem Nettoimport von etwa 24 TWh wurden im Jahr 2024 knapp 5 Prozent des inländischen Stromverbrauchs gedeckt. Der Netto-Stromimport ist Ergebnis des europäischen Strombinnenmarktes, der es im Rahmen der vorhandenen Interkonnektor-Kapazitäten erlaubt, einen grenzüberschreitenden Ausgleich zwischen Erzeugung und Verbrauch herzustellen und insofern nationale Schwankungen abzufedern. Die inländische Erzeugung hätte in bestimmten Bedarfsfällen zu höheren Kosten geführt als der Import von Strom aus unseren Nachbarländern.</p><p>Bruttostromerzeugung aus nicht erneuerbaren Energieträgern</p><p>Die Struktur der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a>⁠ hat sich seit 1990 deutlich geändert (siehe Abb. „Bruttostromerzeugung nach Energieträgern“). Im Folgenden werden die nicht-erneuerbaren Energieträger kurz dargestellt. Erneuerbare Energieträger werden im darauffolgenden Abschnitt näher erläutert.</p><p>Bruttostromerzeugung auf Basis von erneuerbaren Energieträgern</p><p>Der Strommenge, die auf Basis<em>erneuerbarer Energien</em>(Windenergie, Photovoltaik, Wasserkraft, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠, biogener Anteil des Abfalls, Geothermie) erzeugt wurde, hat sich in den letzten Jahrzehnten vervielfacht. Im Jahr 2023 machte grüner Strom erstmals mehr als 50 % der insgesamt erzeugten und verbrauchten Strommenge aus. Diese Entwicklung setzte sich auch im Jahr 2024 fort. Angestoßen wurde das Wachstum der erneuerbaren Energien maßgeblich durch die Einführung des Erneuerbare-Energien-Gesetzes (EEG) im Jahr 2000 (siehe Abb. „Stromerzeugung aus erneuerbaren Energien im Jahr 2024“). Das EEG hat ganz wesentlich zum Rückgang der fossilen Stromerzeugung und dem damit verbundenen Ausstoß von Treibhausgasen beigetragen (vgl. Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/erneuerbare-energien-vermiedene-treibhausgase">Erneuerbare Energien – Vermiedene Treibhausgase</a>“).</p><p>Die verschiedenen<em>erneuerbaren Energieträger</em>tragen dabei unterschiedlich zum Anstieg der Erneuerbaren Strommenge bei.</p><p>Ausführlicher werden die verschiedenen erneuerbaren Energieträger im Artikel „<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Erneuerbare Energien in Zahlen</a>“ beschrieben.</p>

Massnahmen zur Gewährleistung eines schonenden Fischabstiegs an grösseren mitteleuropäischen Flusskraftwerken

Die Wasserkraft muss sich neuen Herausforderungen im Zusammenhang mit der Weiterentwicklung der Gewässerschutzgesetzgebung stellen. Insbesondere das mit dem Inkrafttreten des revidierten Gewässerschutzgesetzes im Januar 2011 vorgeschriebene Ziel, die wesentlichen, durch den Menschen verursachten Gewässerbeeinträchtigungen (unterbrochene Durchgängigkeit, gestörter Geschiebehaushalt, Schwall / Sunk) innert 20 Jahren zu beseitigen, stellt eine grosse Aufgabe für die Energiewirtschaft, aber auch die Kantone dar. Flusskraftwerke können bei der flussaufwärts- und flussabwärts gerichteten Wanderung von Fischen ein Hindernis darstellen. Insbesondere der für die Arterhaltung einiger in mitteleuropäischen Fliessgewässern vorkommender Fischarten wichtige Fischabstieg ist beim aktuellen Ausbaustandard der Anlagen beeinträchtigt. Ohne die Entwicklung baulicher Massnahmen zur Gewährleistung des schonenden Fischabstiegs ist die Energiewirtschaft auf betriebliche Einschränkungen angewiesen, die eine erhebliche Reduktion der Strom-produktion zur Folge hätten. Diese ist aber auch ökologisch unerwünscht, da sie im Gegensatz zum stetig steigenden Strombedarf steht, der dann zu einem grossen Teil durch klassische, nicht erneuerbare Energien oder Stromimporte gedeckt werden müsste. Ziel des Forschungsprojektes ist es, bauliche Massnahmen zum Fischabstieg zu prüfen und so weiterzuentwickeln, dass sie sowohl aus fischökologischer als auch betrieblicher Sicht erfolgreich und ökonomisch eingesetzt werden können.

Ergebnisse zur Anerkennung ausländischer Herkunftsnachweise

<p>Ergebnisse zur Anerkennung ausländischer Herkunftsnachweise</p><p>Herkunftsnachweise für Strom aus erneuerbaren Energien sollen international handelbar sein. Das Herkunftsnachweisregister beim UBA veröffentlicht Ergebnisse aus einem Forschungsprojekt zur Anerkennung ausländischer Herkunftsnachweise.</p><p>Welchen Standards die Herkunftsnachweise genügen müssen, steht im Artikel 15 der EU-Richtlinie 2009/28/EG. So müssen zum Beispiel das Ausstellungsdatum und die Energiequelle angegeben sein. Doch nicht alle Kriterien sind schnell und eindeutig überprüfbar. Deshalb ließ das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ für ausgewählte Staaten klären, ob Herkunftsnachweise aus diesen Ländern grundsätzlich anerkennungsfähig sind. Diese juristische und energiewirtschaftliche Untersuchung erfolgte durch Becker Büttner Held Rechtsanwälte (BBH) und das Öko-Institut e. V. in einem Forschungsvorhaben im Auftrag des Bundesumweltministeriums.</p><p>Die Ergebnisse für die einzelnen Staaten sind in englischen Kurzzusammenfassungen veröffentlicht. Das UBA weist ausdrücklich darauf hin, dass diese Kurzzusammenfassungen keine Aussage darüber treffen, ob für künftige Anträge auf Anerkennung von Herkunftsnachweisen aus den betreffenden Staaten die Anerkennungsfähigkeit gegeben ist. Vielmehr wird das UBA wie bisher seiner gesetzlichen Verpflichtung nachkommen, die Anerkennungsfähigkeit von Herkunftsnachweisen aktuell und einzelfallbezogen zu prüfen. Die Ergebnisse der Gutachten werden in diese Prüfungen einfließen.</p><p>Alle weiteren Staaten, die nicht für die Anerkennungsprüfung ausgewählt wurden, werden vom Umweltbundesamt selbst geprüft. Die Ergebnisse werden nicht auf dieser Website veröffentlicht. Die Nichterwähnung eines Staates bedeutet also nicht, dass das UBA dessen Herkunftsnachweise nicht anerkennt.<br>

Archetypes of a 100% Renewable Energies Power Supply

On the way to a low carbon or even carbon neutral society there are a number of possible paths depending on political and social priorities. The German Federal Environment Agency has therefore been analyzing several "archetypesŁ of a future RE-based power generation. Three radically different scenarios were developed in order to study the technical and ecological feasibility of Germany switching to an electricity supply based entirely on renewable sources by 2050. Apart from different generation structures, the studies assume different degrees of connection and interchange between regions in Germany as well as between Germany and other countries within a Pan-European network.With the "Regions NetworkŁ scenario it has been shown that a 100% RE-based power generation is technically and ecologically feasible (English short version: http://www.umweltdaten.de/publikationen/weitere_infos/3997-0.pdf). Here, all German regions make extensive use of their RE potentials. Energy efficiency compensates for the rise in consumption caused by economic growth, e-mobility, and the use of heat-pumps. The introduction of large-scale electricity storage such as Power-to-Gas and the utilization of demand side management potentials plus a well-developed national electricity transmission grid make substantial contributions to the balancing of load and production. The system dynamics between supply and demand were minutely analyzed over 4 consecutive years.<BR>In the "Local Energy AutarkyŁ scenario, small-scale decentralized energy systems use locally available RE sources to satisfy their power demand without being connected with each other or outside suppliers, i.e. without electricity imports to Germany.<BR>The "International Large ScaleŁ scenario addresses the question whether and to which extent a wider network reaching across Germany's borders can be beneficial in terms of the optimal use of REs, the large-scale balancing between fluctuating RE feed-in and load, and using storage potentials.<BR>Quelle: http://www.sciencedirect.com<BR>

Möglichkeiten und Grenzen der Integration verschiedener regenerativer Energiequellen zu einer 100% regenerativen Stromversorgung der Bundesrepublik Deutschland bis zum Jahr 2050

Hintergrund: Im Rahmen des SRU Sondergutachtens zum Thema 'Stromversorgung im Zeichen des Klimawandels' werden die Möglichkeiten und Grenzen der Integration verschiedener Energiequellen zu einer 100% regenerativen Stromversorgung der Bundesrepublik Deutschland bis zum Jahr 2050 dargestellt. Dazu werden insbesondere die folgenden Teilergebnisse erarbeitet: - Darstellung der Potenziale zur Nutzung erneuerbarer Energien für die Stromerzeugung in Deutschland (Solar, Wind, Wasserkraft, Geothermie, Biomasse). - Darstellung der Entwicklung technischer und ökonomischer Kenngrößen für Technologien zur Stromerzeugung aus erneuerbaren Energien bis 2050. - Aus (1) und (2) werden Kostenpotenzialkurven für die Nutzung der verschiedenen erneuerbaren Energien zur Stromerzeugung in Deutschland abgeleitet. - Für das Jahr 2050 wird unter Berücksichtigung der zeitlichen und räumlichen Verfügbarkeit der verschiedenen erneuerbaren Energieressourcen ein kostenoptimierter regenerativer Stromerzeugungsmix bestimmt. Die Möglichkeit des Stromimports aus einem europäischen Verbundnetz wird berücksichtigt.

15. Energiebericht Rheinland-Pfalz

Auf der Grundlage des Beschlusses des rheinland-pfälzischen Landtags (Drucksache 12/1154 vom 18. März 1992) ist in einem zweijährigen Turnus der Energiebericht des Landes Rheinland-Pfalz zu erstellen. Der nunmehr 15. Energiebericht basiert auf den Beiträgen des MKUEM, des Ministeriums für Wirtschaft, Verkehr, Landwirtschaft und Weinbau (MWVLW), des Ministeriums für Bildung (BM), des Ministeriums für Wissenschaft und Gesundheit (MWG), des Ministeriums der Finanzen (FM) sowie des Ministeriums des Innern und für Sport (MdI) sowie des Statistischen Landesamts Rheinland-Pfalz. Die Schwerpunkte des Berichts umfassen die Ziele und die Darstellung der wichtigsten Handlungsfelder der rheinland-pfälzischen Energiepolitik, landesspezifische energiestatistische Daten zur Entwicklung der Energieerzeugung, des Energieverbrauchs und der Energiepreise, die Kurzberichterstattung gemäß § 7 Abs. 2 Nr. 1 Landesklimaschutzgesetz zur Entwicklung der Treibhausgasemissionen im Zeitraum 1990 bis 2021 sowie die Darstellung und Bewertung der Entwicklung energiebedingter Emissionen von SO2 und NOx. Die im 15. Energiebericht Rheinland-Pfalz enthaltenen amtlichen Statistiken und die damit verbundenen statistischen Auswertungen beziehen sich insbesondere auf die Bilanzjahre 2020 und 2021. Der 15. Energiebericht zeigt sehr anschaulich, dass im Berichtszeitraum durch zahlreiche Maßnahmen der Landesregierung die Umsetzung der Energiewende im Land gemeinsam erfolgreich weiter vorangebracht werden konnte. So konnte in den zurückliegenden 10 Jahren der Anteil der erneuerbaren Energien an der Bruttostromerzeugung von circa 30 Prozent in 2011 auf circa 51 Prozent sowie an der Deckung des Bruttostrombedarfs von circa 17 Prozent in 2011 auf über 37 Prozent deutlich gesteigert werden. Gleichzeitig ist der Anteil der Stromimporte zur Deckung des rheinland-pfälzischen Strombedarfs von über 43 Prozent in 2011 auf unter 27 Prozent gesunken.

In 2022, 87% of the imported photovoltaic power stations came from China

Press In 2022, 87% of the imported photovoltaic power stations came from China Share Press release No. N 012 of 1 March 2023 Power stations to the total value of 3.6 billion euros were imported, exports amounted to 1.4 billion euros Just under 2.5 million photovoltaic power stations had been installed by November 2022, an increase of 14% on the same month a year earlier New record high: photovoltaics accounted for almost 12% of the total electricity fed into the grid from January to November 2022 WIESBADEN – From Germany's perspective, China is by far the most important country of origin of photovoltaic power stations. Roughly 87% of the photovoltaic power stations imported to Germany in 2022 came from the People's Republic. The Federal Statistical Office ( Destatis ) reports that the value of these imports amounted to just over 3.1 billion euros. Overall, Germany imported photovoltaic power stations with a value of roughly 3.6 billion euros last year. China was the most important supplier of solar cells, solar modules and the like, followed at a significant distance by the Netherlands (143 million euros or 4%) and Taiwan (94 million euros, 3%). Loading... Loading... Loading... contact for further info Press office Phone: +49 611 75 3444 Contact Form More on this topic Production Receipts, expenditure Environmental economics

Bilanz 2019: CO2-Emissionen pro Kilowattstunde Strom sinken weiter

<p>Bilanz 2019: CO2-Emissionen pro Kilowattstunde Strom sinken weiter</p><p>Deutschland verkauft mehr Strom ins Ausland als es importiert</p><p>In Deutschland geht der spezifische CO2-Emissionsfaktor im deutschen Strommix weiter nach unten. Das zeigen aktuelle Berechnungen des Umweltbundesamtes (UBA) bezogen auf das Jahr 2019. Vor allem mehr Strom aus Erneuerbaren Energien und weniger Strom aus Kohleverbrennung sowie die Preise im Emissionshandel trugen dazu bei. Deutschland verkauft weiterhin mehr Strom ins Ausland als es importiert. Deutschland emittiert 2017 durchschnittlich 485 Gramm Kohlendioxid als direkte Emission für die Erzeugung einer Kilowattstunde Strom für den Endverbrauch. Das sind 279 Gramm pro Kilowattstunde oder 36 Prozent weniger als 1990. Für 2018 berechnet das UBA auf der Basis vorläufiger Daten 468 Gramm pro Kilowattstunde (-296 g/KWh, -38 % zu 1990). Hochgerechnete Werte für das Jahr 2019 ergeben 401 Gramm pro Kilowattstunde (-363 g/KWh, -47 % zu 1990).</p><p>Die Emissionen für die Stromerzeugung sinken 2017 im Vergleich zum Referenzjahr 1990 um 83 Mio. t CO2, auf 283 Millionen Tonnen Kohlendioxid. Für das Jahr 2018 werden vorläufige Emissionen von 269 Mio. t CO2errechnet und für das Jahr 2019 werden 219 Mio. t CO2geschätzt.</p><p><em>Die Genauigkeit der Daten</em></p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2017 ab. Für das Jahr 2018 liegen vorläufige Daten vor. 2019 wurde geschätzt.</p>

1