API src

Found 2331 results.

Bodenqualität (ohne Altlasten) (WMS Dienst)

Bodenqualität ist die Gesamtheit der natürlichen Bodenfunktionen einschließlich der Archivfunktion, die durch anthropogene Einflüsse unterschiedlich stark gemindert sind (Bodenschutzkonzept Stuttgart 2006). Maßgeblich für die Beurteilung der Bodenqualität sind die Bodenfunktionen nach § 2 Abs. 2 des Bundesbodenschutzgesetzes (BBodSchG 1998). Die Funktionsbewertung erfolgt nach dem Bodenbewertungsinstrument Sachsen (LfULG 2022), die Bewertung der anthropogenen Belastungen in Anlehnung an das Bodenschutzkonzept Stuttgart (2006). Dazu werden vor allem Versiegelung, Deponien, Aufschüttungen, Abgrabungen und Trümmerschuttflächen berücksichtigt. Der Versiegelungsgrad entstammt der erweiterten Blockkarte Dresdens.

Bodenqualität (ohne Altlasten) (WFS Dienst)

Bodenqualität ist die Gesamtheit der natürlichen Bodenfunktionen einschließlich der Archivfunktion, die durch anthropogene Einflüsse unterschiedlich stark gemindert sind (Bodenschutzkonzept Stuttgart 2006). Maßgeblich für die Beurteilung der Bodenqualität sind die Bodenfunktionen nach § 2 Abs. 2 des Bundesbodenschutzgesetzes (BBodSchG 1998). Die Funktionsbewertung erfolgt nach dem Bodenbewertungsinstrument Sachsen (LfULG 2022), die Bewertung der anthropogenen Belastungen in Anlehnung an das Bodenschutzkonzept Stuttgart (2006). Dazu werden vor allem Versiegelung, Deponien, Aufschüttungen, Abgrabungen und Trümmerschuttflächen berücksichtigt. Der Versiegelungsgrad entstammt der erweiterten Blockkarte Dresdens.

Untersuchung von Mischungsprozessen verschiedener Waesser an Hand stabiler Isotopensignaturen in einem organisch belasteten Gebiet

Charakterisierung einer organischen Umweltbelastung auf einem ehemaligen Gaswerkstand; Charakterisierung von Oberflaechenwaessern, Grundwaessern und Thermalwaessern und moeglicher Mischprozesse; Untersuchung von saisonalen Schwankungen; Experimentelle Untersuchungen zum Isotopenaustausch von organischen Belastungen und Waessern.

Graduiertenkolleg (GRK) 1398: Non-linearities and upscaling in porous media, GRK 1398: Nichtlinearitäten und Upscaling in porösen Medien

Der Umgang mit Nichtlinearitäten und die Frage des Upscaling stellen eine der größten Herausforderungen für technische und umweltrelevante Anwendungen im Gebiet der Strömungs- und Transportphänomene in porösen Medien dar. Eine Vielzahl hierarchischer (räumlicher und zeitlicher) Skalen können in porösen Medien identifiziert werden, die im Allgemeinen mit deren Heterogenitätsstrukturen zusammenhängen. Strömungs- und Transportphänomene können von gekoppelten Mechanismen verursacht oder beeinflusst werden, die von einem nichtlinearen Zusammenspiel von physikalischen, (geo-)chemischen und/oder biologischen Prozessen herrühren. Um Probleme auf diesem Feld sinnvoll angehen zu können, ist eine interdisziplinäre Umgebung unerlässlich. Die beteiligten Wissenschaftlerinnen und Wissenschaftler zeichnen sich in den unterschiedlichsten Arbeitsgebieten aus: angewandte Mathematik, Umwelt- und Bauingenieurwesen, Geowissenschaften und Erdölingenieurwissenschaften. Die gemeinsamen niederländisch-deutschen Forschungsprojekte werden an der TU Delft, der TU Eindhoven, der Universität Utrecht und der Universität Stuttgart durchgeführt. Grundlagenforschung, so wie etwa die Anwendung stochastischer Modelle und die Entwicklung effizienter numerischer Methoden, soll mit angewandter Forschung auf Feldern wie der Optimierung von Brennstoffzellen, Sequestrierung von CO2 oder der Vorhersage von Hangrutschungen verbunden werden. Als mögliche weiterführende Themen werden auch Anwendungen in der Papierherstellung oder der Biomechanik angestrebt. Ein zentraler Aspekt des Internationalen Graduiertenkollegs ist ein Lehrprogramm, das die Unterstützung von Lehre und Forschung von jungen Wissenschaftlerinnen und Wissenschaftlern zum Ziel hat. Dies soll erreicht werden, indem anspruchsvolle Kurse angeboten werden, die typischerweise die Fragestellungen der jungen Wissenschaftler abdecken. Außerdem soll alle vier Wochen via Videokonferenz ein Graduiertenseminar zur Diskussion von Forschungsergebnissen stattfinden. Es soll weiterhin ein Austauschprogramm geben, das Doktorandinnen und Doktoranden erlaubt, sechs bis neun Monate im Partnerland zu verbringen. Das somit entstehende internationale und interdisziplinäre Umfeld wird es Doktorandinnen und Doktoranden ermöglichen, effizient Spitzenforschung auf dem Feld der Nichtlinearitäten und des Upscaling im Untergrund durchzuführen.

GTS Bulletin: FTDL40 EDZW - Forecast (details are described in the abstract)

The FTDL40 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FT): Aerodrome (VT >= 12 hours) A1A2 (DL): Germany (The bulletin collects reports from stations: EDOP;SCHWERIN PARCHIM ;EDDC;DRESDEN ;EDDB;BERLIN-Brandenburg INT ;EDDV;HANNOVER ;EDDW;BREMEN ;EDFH;FRANKFURT-HAHN ;EDDR;SAARBRUECKEN ;EDDS;STUTTGART ;EDDT;BERLIN-TEGEL INT ;EDDM;MUNICH INT ;EDDN;NUERNBERG;EDDP;LEIPZIG HALLE ;EDDK;COLOGNE BONN ;EDDL;DUESSELDORF INT ;EDDE;ERFURT ;EDDF;FRANKFURT AM MAIN INT ;EDDG;MUENSTER OSNABRUECK ;EDDH;HAMBURG ;)

Tunnelgeothermieanlage Rosensteintunnel in Stuttgart + Messprogramm

Die Landeshauptstadt Stuttgart (Baden-Württemberg) plant, in der Nähe des Stuttgarter Zoos 'Wilhelma' eine Tunnelgeothermieanlage in den neu zu errichtenden Rosensteintunnel zu implementieren. Ziel des Vorhabens ist, die geothermische Wärme und die Abwärme des Straßenverkehrs zum Beheizen des benachbarten, neu zu errichtenden Gebäudes (z.B. Elefantenhaus), zur Wassertemperierung der Elefantenduschen und der Außenbecken im Zoo 'Wilhelma' zu nutzen sowie gleichzeitig die Tunnelbetriebstechnik zu kühlen. Übertragen wird die Wärme durch neuartige fluiddurchflossene Absorberleitungen, die in dem Teil des Tunnels zwischen dessen Innen- und der Außenschale verlegt werden. Die Wärmetauscherflüssigkeit nimmt die in der Erde und die in der Tunnelluft enthaltene Wärme auf und gibt diese über eine Wärmepumpe reguliert ab. Der jährliche Wärmebedarf für das Elefantenhaus wird mit 1.382 Megawattstunden und der jährliche Strombedarf für die Kühlung der Tunnelbetriebstechnik mit 219 Megawattstunden prognostiziert. Die zu erwartende CO2-Minderung durch die Versorgung des Elefantenhauses und die Eigenversorgung des Tunnels beträgt jährlich insgesamt 201 Tonnen CO2 bzw. 51 Prozent der Gesamtemissionen. Darüber hinaus werden weitere Luftschadstoffe, wie Staub, Kohlenmonoxid und flüchtige organische Kohlenwasserstoffe (VOC), vermieden.

ANK-DAS-B.I: Natur Urban - Gewerbegebiete im Klimawandel, ANK-DAS-B.I: Natur Urban - Gewerbegebiete im Klimawandel

Kommunales Abfallaufkommen nach Abfallarten

Kommunales Abfallaufkommen in Stuttgart seit 1990 nach Abfallarten

Nachweis der Machbarkeit der CO2-Abtrennung mittels CycloneCC-Technologie in der Zementindustrie

Holcim (Süddeutschland) GmbH wird in dem Vorhaben der Erstanwender der sogenannten 'CycloneCC-Technologie' als 'End-of-Pipe'-Lösung innerhalb der Zementindustrie im industriellen Maßstab sein. Im Projekt PRIDE-ID wird ein Versuch der Technologie zur Abscheidung unvermeidbarer CO2-Emissionen mittels realer Prozessgase in einem Zementwerk erfolgen. Die CycloneCC-Technologie, welche eine CO2-Abtrennung mittels Rotating Packed Bed-Komponente einsetzt, ist als innovative, kostengünstige CO2-Abscheidungstechnologie von dem Unternehmen Carbon Clean entwickelt worden (eingebunden als Unterauftragnehmer). Zudem ist im Rahmen des zu fördernden Vorhabens die Universität Stuttgart als Projektpartner eingebunden, welche den Einsatz der CycloneCC-Technologie wissenschaftlich begleiten und CO2-Nutzungsszenarien für eine perspektivische Skalierung der Technologie erarbeiten wird. Als weiterer wissenschaftlicher Partner charakterisiert das Institut für Nichtklassische Chemie e.V. die Wirkkomponenten und deren Alterungsprodukte in der Aminlösung und identifiziert die Mechanismen der Alterungsreaktionen. Ziel des Projekts ist die Installation einer Versuchsanlage zur CO2-Abtrennung mit der CycloneCC-Technologie im Zementwerk Dotternhausen, um 10 TPD CO2 aus dem Gasstrom des Zementwerks abzuscheiden. Das Projekt wird am Gelände des Holcim Zementwerk in Dotternhausen und unter Verwendung eines Teilabgasstromes des Werkes stattfinden. Holcim wird die Testkampagne durch Mitarbeiter vor Ort unterstützen und Probenentnahmen gewährleisten. Anschließend wird Holcim bei der Erarbeitung des Skalierungskonzept unterstützen. Holcim wird weitreichende Kenntnisse im Bereich Verbrennungsprozess und Betriebsweisen in der Zementproduktion, der Verwendung von CO2 als Rohstoff sowie erforderliche Prozessdaten (u.a. für die Charakterisierung der Stoffströme und potenzielle Störkomponenten) in das Vorhaben einbringen.

Stabilitätsbezogene Weiterentwicklung von Energiesystemoptimierungsmodellen, Teilvorhaben: Entwicklung von Nebenbedingungen zur Berücksichtigung der dynamischen Systemstabilität in Energiesystemoptimierungsmodellen

In diesem Verbundvorhaben sollen Energiesystem-Optimierungsmodelle (ESOM) um Aspekte der Systemstabilität erweitert werden. Bisher berücksichtigen ESOM die Stabilität der elektrischen Energieversorgung nicht oder nur sehr rudimentär. Dies war bislang ausreichend, da u.a. durch Synchrongeneratoren von großen Kraftwerken eine ausreichende Anzahl stabilisierender Elemente sichergestellt war, unabhängig von der detaillierten Ausgestaltung des Systems. Aufgrund mehrerer Faktoren (Wegfall Synchrongeneratoren, Zunahme Entfernung Erzeugung-Verbrauch, Volatilität der Erzeugung, …) ist dies allerdings nicht mehr sichergestellt. Daher wird die Systemstabilität auch für die Energiesystemoptimierung zunehmend relevant. Allerdings fehlen geeignete Methoden, um die Systemstabilität in ESOM zumindest näherungsweise berücksichtigen zu können. Bisher arbeiten ESOM mit stationären Zusammenhängen. Auf deren Ergebnissen aufbauend erfolgen dann Stabilitätsuntersuchungen und die Ermittlung ggf. notwendiger Gegenmaßnahmen. Diese sequentielle Vorgehensweise ist aufwändig und kann dazu führen, dass das finale Ergebnis nicht optimal ist. Vorzuziehen wäre eine Einbeziehung der Stabilität bereits während der Optimierung, so dass die Entscheidungen im ESOM für bestimmte Strukturoptionen (inkl. Sektorenkopplung) bereits deren Einfluss auf die Stabilität berücksichtigen. Dies würde es ermöglichen, dass keine oder deutlich weniger zusätzliche Gegenmaßnahmen notwendig würden und somit das Ergebnis des ESOM näher an einem auch unter Stabilitätsgesichtspunkten zulässigen Optimum liegt. Aus dieser Motivation heraus werden die Universität Stuttgart (IFK) und das DLR (Institut für Vernetzte Energiesysteme) das Verbundvorhaben STAWESOM bearbeiten. Das DLR wird das intern entwickelte ESOM 'REMix' und Expertise zur effizienten Implementierung von ESOMs einbringen. Das IFK wird Expertise zur Systemstabilität einbringen, geeignete Stabilitätsnebenbedingungen entwickeln und die Projektleitung übernehmen.

1 2 3 4 5232 233 234