Dieses Teilprojekt wird die räumliche Feinstruktur von wichtigen atmosphärischen Komponenten entlang des Breitengrades von Nordeuropa via Svalbard bis in den arktischen Ozean untersuchen. Dabei werden schiffs- und flugzeuggebundene Messungen mit denen auf der deutsch/französischen Arktisforschungsstation in Ny-Ålesund auf Svalbard verknüpft. Insbesondere werden wir die breitenabhängige Variabilität des wichtigen klimarelevanten Wasserdampfs, Aerosolen und Wolken auf den Strahlungshaushalt abschätzen.
Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.
Pflanzensoziologische und synsoziologische Uebersicht von NW-Spitzbergen. Vegetationskartierungen ausgewaehlter Gebiete. Biomassen-Messungen. Photosynthese- und Respirationsrate bei ausgewaehlten Pflanzengesellschaften.
During the ACLOUD (Arctic Cloud Observations Using airborne measurements during polar Day) campaign conducted in May/June 2017 meteorological data (temperature, horizontal wind components, air pressure) have been measured using instrumentation that was installed at the nosebooms of both aircraft Polar 5 and Polar 6. This dataset presents the 1Hz resolution data. The high temporal resolution data (at 100 Hz) with all wind components are available here: doi:10.1594/PANGAEA.900880). For each flight the data are given as functions of time and position (including height above ground) along the flight tracks. Listed in this repository are all flights beginning with the test flight in Bremen and the Ferryflights to Longyearbyen. All other measurement flights started and ended in Longyearbyen. Each file represents an entire flight starting well before the first movement of the plane and ending after the final parking position has been reached after landing. The wind measurement is only valid during flight and the full accuracy is only achieved during straight level flight sections. The absolute accuracy of the wind components is 0.2m/s for straight and level flights sections. For further informations on the data processing and accuracy of the turbulence measurement refer to Hartmann et al. (2018, doi:10.5194/amt-11-4567-2018). For further information on the ACLOUD campaign we refer to Wendisch et al. (2018, doi:10.1175/BAMS-D-18-0072.1). -- All data are given as decimal values at 1Hz in columns in this order and meaning: UTC - UTC-time in seconds (since midnight) h - height in metres based on WGS84 lon - longitude in degress based on WS84 lat - latitude in degress based on WS84 p - static pressure in hpa gs - ground speed in m/s pitch - pitch angle in degrees roll - roll angle in degrees rh - relative humidity from Vaisala at noseboom T - temperature from PT100, corrected for adiabatic heating u - west-east component of wind speed in m/s, positive towards east v - south-north component of wind speed in m/s, positive towards north tas - true air speed in m/s
This data set unites the individual data of the MOSAiC Airborne observations in the Central Arctic (MOSAiC-ACA) campaign, carried out in late summer 2020 northwest of Svalbard (Norway). The objective of MOSAiC-ACA was to study turbulent fluxes of energy and momentum in the Arctic boundary layer and low- and mid-level mixed-phase clouds and their role in Arctic amplification in the exit area of the research vessel Polarstern during the MOSAiC expedition. The research aircraft Polar 5 was equipped with active and passive remote sensing instruments, measurements for turbulent and radiative energy fluxes, insitu probes for cloud and aerosol particles, and dropsondes. In total, 10 research flights with 44 flight hours over the open ocean and the marginal sea ice zone have been performed between 30 August and 13 September 2020.
This dataset consists in 324 measurements of elemental (EC) and organic carbon (OC) concentrations in snow samples collected at 49 sites across the Svalbard archipelago, Norway, between 2007 and 2018. The samples were collected during a spatial survey in Svalbard conducted in April 2016, and as part of a program of surface snow monitoring on northeastern Spitsbergen carried out between 2007 and 2018. The EC and OC concentrations were measured by the thermo-optical transmittance method.
During the ACLOUD (Arctic Cloud Observations Using airborne measurements during polar Day) campaign conducted in May/June 2017 meteorological data (temperature, 3 wind components, air pressure) have been measured in high temporal resolution (100 Hz) using instrumentation that was installed at the nosebooms of both aircraft Polar 5 and Polar 6. For each flight the data are given as functions of time and position (including height above ground) along the flight tracks. All flights started and ended in Longyearbyen, Svalbard. Each file represents an entire flight starting well before the first movement of the plane and ending after the final parking position has been reached after landing. The wind measurement is only valid during flight and the full accuracy is only achieved during straight level flight sections. The absolute accuracy of the wind components is 0.2m/s for straight and level flights sections and the relative accuracy of the vertical wind speed is about 0.05m/s for straight and level flight sections. For these sections, which can be obtained on the basis of the given roll and pitch angles of the aircraft, the 100 Hz data can be used to derive turbulent fluxes of momentum and sensible heat. For further informations on the data processing and accuracy of the turbulence measurement refer to Hartmann et al. (2018, doi:10.5194/amt-11-4567-2018). For further information on the ACLOUD campaign we refer to Wendisch et al. (2018, doi:10.1175/BAMS-D-18-0072.1). -- All data are given as decimal values at 100Hz in columns in this order and meaning: t - UTC-time in seconds (since midnight) lon - longitude in degress based on WGS84 lat - latitude in degress based on WGS84 h - height in metres based on WGS84 p - static pressure in hpa, corrected for the influence of the aircraft T - temperature from PT100, corrected for adiabatic heating u - west-east component of wind speed in m/s, positive towards east v - south-north component of wind speed in m/s, positive towards north w - vertical wind speed in m/s pitch - pitch angle in degrees roll - roll angle in degrees thdg - true heading of the aircraft in degrees
The PANORAMA-2 research cruise was carried out between August 15th and September 20th 2015 aboard the Italian research vessel OGS Explora, like the PANORAMA-1 cruise in 2013. The intended survey area was the European sector of the Arctic east and southeast of the Svalbard archipelago in the area of the northern Barents Sea. Main target of the PANORAMA-2 cruise was the acquisition of new geophysical data and the probing of surficial sediments in the underexplored area of the Sørkapp Basin and Olga Basin. In the course of the 20 day lasting Leg1 of the PANORAMA-2 cruise geophysical data acquisition was carried out. About 1750 km of 2D multi-channel seismic data were acquired and about 350 km of wide angle seismic data by means of sonobuoys. Sediment echosounder data, multi-beam data, gravity data and geomagnetic data were acquired during the entire cruise in a 24/7 mode within the survey area. After a 1-day stopover in Longyearbyen for a crew change of a part of the scientific crew, the research vessel OGS Explora returned to the survey area for another 11 days. During Leg-2 of the PANORAMA-2 cruise the surficial sediments were sampled by means of gravity corer, multi corer and dredge at 34 stations all together. Sediment sampling was carried out during day-light times only. Night times were used for acquisition of geomagnetic data, gravity data, sediment echosounder data and multi-beam data.
Between 20.08.2012 and 16.09.2012, bathymetric data was acquired in the Arctic west of Svalbard during the cruise HE387 on board R/V HEINCKE, which was aimed at the investigation of gas emissions at the Svalbard continental margin. The main objectives of the cruise were the quantification of the amount of methane that is released as gas bubbles from the seafloor, mapping the distribution of gas emissions and identifying the source of the gas. By utilizing the multibeam echosounder (MBES) KONGSBERG EM710, a bathymetric map of the working area was conducted and water column data was examined for the detection of gas emission sites, providing the basis for their correlation with seafloor morphologies. Furthermore, additional echosounders (SES2000 & EK60) collected subbottom and water column information. Direct, visual and acoustic measurements on the seafloor were conducted through the remotely operated vehicle (ROV) Cherokee (MARUM) to locate and quantify individual gas emission sites and estimate their flux into the ocean. Pore water samples and measurements of dissolved methane in the water column were obtained from hydrocasts and sediment sampling. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. Description of the data source: During the HE387 cruise, the hull-mounted KONGSBERG EM710 multibeam ecosounder (MBES) was utilized to perform bathymetric mapping. According to the manufacturer, its maximum depth limit is at 2000 m; however, its optimum performance is obtained in shallow to mid water depths of maximum 1000 m. The EM710 operates at sonar frequencies of 70 to 100 kHz. 256 beams (and up to 800 soundings with equidistant and dual swath mode) are formed for each ping with a 1°(Tx)/2°(Rx) footprint. The seafloor is detected using amplitude and phase information for each beam sounding. For further information consult: https://epic.awi.de/id/eprint/33252/1/RV_Heincke_Multibeam_Support.pdf. The position and depth of the water column is estimated for each sounding through the two-way-travel time, beam angle and ray bending due to refraction in the water column by sound speed variations. A problem that occurred during the cruise was a wobbling of the bathymetric data, which persisted throughout the journey even after a calibration of the MBES system at the beginning of the cruise. Most surveys were carried out for the purpose of simultaneous flare mapping and acquisition of bathymetry. The EM710 was running almost continuously in combination with the single beam echosounder EK60. The transmission and recording of subbottom profiler SES2000 caused noise signals in the MBES data and was therefore only used for particular areas of interest. Responsible person during this cruise / PI: Christian dos Santos Ferreira (cferreira@marum.de) Description of data processing: Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person: Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System suite (Caress, D.W., and D.N. Chayes, MB-System Version 5.5, open source software distributed from the MBARI and L-DEO web sites, 2000-2012.) was utilized for this purpose. A tide correction was applied to the HE387 data. There were no roll, pitch and heave corrections. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric grid of the cruise HE387 has a resolution of 10 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. All grids produced are retrievable through the PANGAEA database (www.pangaea.de). Projection: Geographic Coordinate System / WGS84 Chief Scientist: Heiko Sahling CR: https://elib.suub.uni-bremen.de/edocs/00103879-1.pdf CSR: https://www2.bsh.de/aktdat/dod/fahrtergebnis/2012/20120416.htm Raw data: https://doi.org/10.1594/PANGAEA.816220
Origin | Count |
---|---|
Bund | 10 |
Land | 2 |
Wissenschaft | 6 |
Type | Count |
---|---|
Förderprogramm | 8 |
Messwerte | 4 |
Strukturierter Datensatz | 6 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 14 |
Language | Count |
---|---|
Deutsch | 7 |
Englisch | 10 |
Resource type | Count |
---|---|
Archiv | 3 |
Datei | 4 |
Keine | 6 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 10 |
Luft | 14 |
Mensch & Umwelt | 16 |
Wasser | 12 |
Weitere | 16 |