API src

Found 2915 results.

Stadtentwicklungsplan (StEP) Klima 2.0

Der StEP Klima 2.0 widmet sich den räumlichen und stadtplanerischen Ansätzen zum Umgang mit dem Klimawandel. Er beschreibt über ein räumliches Leitbild und vier Handlungsansätze die räumlichen Prioritäten zur Klimaanpassung: für Bestand und Neubau, für Grün- und Freiflächen, für Synergien zwischen Stadtentwicklung und Wasser sowie mit Blick auf Starkregen und Hochwasserschutz. Und er stellt dar, wo und wie die Stadt durch blau-grüne Maßnahmen zu kühlen ist, wo Entlastungs- und Potenzialräume liegen, in denen sich durch Stadtentwicklungsprojekte Synergien für den Wasserhaushalt erschließen lassen.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Untersuchung der konvektiven Entwicklung hin zu stratiformer Niederschlagsbildung mittels Modellierung und polarimetrischer Radarbeobachtungen im C- und Ka-Band (IcePolCKa - Phase 2)

Aktuelle Wettermodelle haben Schwierigkeiten die räumliche Niederschlagsverteilung von konvektiven Wolkensystemen korrekt zu modellieren, was die Vorhersage der Niederschlagsintensität und -dauer erschwert. Ziel dieses Projekts ist es zu untersuchen, wie Eispartikeleigenschaften die Entwicklung stratiformer Niederschlagsregionen innerhalb konvektiver Systeme beeinflussen. Hierzu schlagen wir die synergetische Nutzung zweier polarimetrischer Radarsysteme vor, des C-Band POLDIRAD des DLR in Oberpfaffenhofen und des Ka-Band MIRA-35 der LMU in München. Zum einen werden dazu Details der Eismikrophysik mittels einer neuen Methode beleuchtet. Zum anderen werden die Konvektionszellen mit Hilfe des operationellen DWD Radarnetzwerks verfolgt, um zeitliche Entwicklung und horizontalen Kontext zu erfassen. Für die konkreten Beobachtungstage werden wir die räumliche Entwicklung zwischen konvektiven und stratiformen Regionen mit hochaufgelösten Wettermodellläufen mit unterschiedlichen Mikrophysik-Schemata vergleichen. Ziel dieses Vergleichs ist es zu verstehen, warum die meisten Schemata die Radarreflektivität in konvektiven Regionen noch immer überschätzen und warum gleichzeitig zu wenig stratiformer Niederschlag produziert wird.In Phase 1 konnten wir die Machbarkeit koordinierter C- und Ka-Band Messungen an den beiden Standorten demonstrieren und einen Algorithmus zur Ableitung von Eispartikeleigenschaften entwickeln. Dabei konnten wir ein tieferes Verständnis der bestehenden Mehrdeutigkeiten gewinnen, welche durch die unbekannte Eispartikeldichte verursacht werden. Gleichzeitig wurden für die zahlreichen Beobachtungstage entsprechende Wettermodellläufe mit fünf unterschiedlichen Mikrophysik-Schemata durchgeführt, um die Variabilität klassischer Parameter (z.B. Anzahl, Höhe und räumliche Verteilung der Zellkerne) zwischen den Schemata zu analysieren. In Phase 2 wollen wir unsere Methoden aus Phase 1 weiterentwickeln, um noch unbekannte Größen wie die Eispartikeldichte und die räumliche Struktur des Gesamtsystems bestehend aus konvektivem Zellkern und stratiformen Teil zu erfassen. Dies ermöglicht es uns zu untersuchen wie mikrophysikalische Prozesse wie Bereifung und Aggregation Eispartikel modifizieren und damit deren Transport in den stratiformen Niederschlagsbereich beeinflussen. Um bestehende Mehrdeutigkeiten einzugrenzen, werden wir dazu Messungen der Fallgeschwindigkeit und der linearen Depolarisation mit einbeziehen. Diese Höhen-Zeit-Schnitte werden mit den Zell-Trajektorien in einem Datensatz von etwa 100 konvektiven Tagen zeitlich wie statistisch in Verbindung gebracht, um die beobachtete und modellierte Mikrophysik im konvektiv-stratiformen Übergang einzuordnen. Dazu wird die Verfolgung von Zellen in Messung und Modell auf die umgebende stratiforme Niederschlagsregion ausgeweitet. Die Kombination der horizontalen und vertikalen Perspektive ist dabei eine wesentliche Neuerung unseres Ansatzes im Vergleich zu bisherigen Studien.

EnEff:Stadt: Energieeffizienzsteigerung durch die klimaangepasste, synergetische Nutzung von innovativem Energie- und Regenwassermanagement für das Stadtquartier ecoSquare, Teilvorhaben: Zisternenaktivierung und Energiemonitoring

EnEff:Stadt: Energieeffizienzsteigerung durch die klimaangepasste, synergetische Nutzung von innovativem Energie- und Regenwassermanagement für das Stadtquartier ecoSquare, Teilvorhaben: Untersuchungen zur Verdunstungskühlung, Solarenergie mit Gründächern und Biodiversität

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), NAWDEX - North Atlantic Waveguide and Downstream Impact Experiment

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.

Mobilitätsverbund werthaltige ländliche Lebensräume, Teilprojekt: G: Umsetzung Reallabor AWO Saalfeld

Sustainable Agriculture through Artificial Intelligence and Digital Technologies, Teilvorhaben: Kulturspezifische optische Sortierung während der Ernte von Mischkulturen

Entwicklung eines neuartigen Konzepts zur Kombination von Solarthermie und landwirtschaftlicher Flächennutzung durch bifaziale Flachkollektoren, Teilvorhaben: Systementwicklung und -auslegung

Entwicklung eines ganzheitlichen und nachhaltigen Recyclingansatzes für Lithium-Ionen-Batterien (LIB), Teilvorhaben C

Priority program (SPP) 1897: Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation, Wege zur Steigerung der Energiedissipation und Dämpfung in selbsterregten Strukturen mit irregulären Schwingungsantworten - Kombination datenbasierter Verfahren mit modellbasierten Zugängen

Der Fokus des Projektes liegt auf der Entwicklung von Methoden zur Analyse und Charakterisierung von Dämpfungselementen in selbsterregten Mehrkomponentensystemen mit irregulärer Schwingungsantwort unter vielfältigen Betriebsbedingungen. Dämpfungselemente und ihre Wirkungsmechanismus können im Falle regulärer Lösungen, d.h. periodische oder transiente Schwingungen, mit Standardtechniken beschrieben werden, wohingegen die Identifikation und Beschreibung der Energiequellen und Energiesenken sowie des Energieflusses im Falle von irregulären Schwingungen ein ungelöstes Problem darstellt. Außerdem enthalten die meisten technischen Systeme eine Vielzahl von lokalen Nichtlinearitäten und Dämpfern, u.a. die Kontakt- und Fügestellen des Systems, und werden unter zahlreichen verschiedenen Bedingungen betrieben. Daher stellt die Charakterisierung von Dämpfungselementen unter diesen Randbedingungen eine große Herausforderung dar. Im Zustand irregulärer Schwingungen sind die zahlreichen Energiesenken in stetiger Interaktion. Spätestens die zusätzliche Komplexitätserhöhung durch die Berücksichtigung der zahlreichen Lastfälle macht eine physikalische Beschreibung der Energiedissipation und somit die Bewertung von Dämpfungsmaßnahmen unmöglich. Aus diesem Grunde sind neue Methoden zur Bewertung und Charakterisierung von Dämpfungsmaßnahmen notwendig. In diesem Zusammenhang schlagen wir die Entwicklung von Methoden und Werkzeugen zur eingehenden Analyse der Schwingungsantwort sowie der Struktur-, Dämpfungs- und Lastparameter vor. Der erste Teil setzt sich mit der Entwicklung von Methoden zur Analyse und numerischen Betrachtung von Dämpfungselementen im Umfeld von reiberregten Systemen mit irregulären Schwingungsantworten auseinander. Grundlage für diese Untersuchungen sind numerisch erzeugte Daten. Es kommen Werkzeuge aus dem Feld der nichtlinearen Zeitreihenanalyse und der multivariaten Statistik zum Einsatz. Das zentrale Element ist die Datenmatrix M, die mit charakteristischen Größen aus unterschiedlichen Klassen für unterschiedliche Lastszenarien gefüllt wird. Das abschließende Ergebnis ist eine Prozedur zur Bewertung und Optimierung von Dämpfungselementen und Dissipationsmechanismen in Systemen mit irregulärer Schwingungsantwort. Beim zweiten Teil handelt es sich um eine konsequente Fortsetzung des Vorgehens in dem Sinne, dass nun Daten aus Experimenten als Eingangsgrößen für das Verfahren gewählt werden. Somit handelt es sich um eine Validierung des Verfahrens. Die Daten stammen von einem Pin-on-Disk System und einer Reibungsbremse. Das Projekt versucht existierende Grenzen zwischen den Bereichen physikalische Systemmodellierung, Datenanalyse, Zeitreihenanalyse und Systemauslegung zu überschreiten und Synergieeffekte aus diesen Bereichen zu nutzen. Daher hat es einen visionären und ambitionierten Charakter.

1 2 3 4 5290 291 292