Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Im Gesamtverbund wird sich die Hochschule Bochum hauptsächlich mit 3 Teilprojekten und zusätzlicher Mitarbeit in weiteren Teilprojekten beschäftigen: 1.) Physikalische Modellierung des Ladevorgangs und Simulation des Lade- und Fahrzyklus. Dabei steht die Durchdringung der Schnellladeproblematik mit Definitionen zu Anforderungen, Herausforderungen und Zielkonflikten des Systems im Vordergrund. 2.) Wissenschaftliche Auseinandersetzung mit der Kontaktierung innerhalb der Ladestation und im Batteriezellverbund bzw. zwischen Ladesäule und Fahrzeugbatterie. Hier werden im Rahmen einer Promotion die Möglichkeiten von Kontaktmaterialen, der Verbindungsformen, Einflussnahme auf die Wärmeentwicklung bzw. Wärmeabfuhr und das Optimierungspotential bei der Kontaktierung mit hohen Stromstärken bearbeitet. Ziel ist eine möglich effiziente Verbindung mit geringen Verlusten ohne zusätzliche Anforderungen an das Temperaturmanagement. 3.) Aufbau eines Demonstrationsfahrzeugs mit dem die Entwicklungskomponenten der Kooperationspartner, Schnellladestation und Fahrzeugbatterie, einem realitätsnahen Testprogramm folgend, erprobt und veranschaulicht werden können. Die Fahrzeugtechnologie (Spannungsebene, Temperaturkonditionierung usw.) müssen den geänderten Anforderungen angepasst werden und werden als mögliche Herausforderungen gelistet. Als Projektabschluss und übergeordnetes Hauptziel wird mit dem Prototypenfahrzeug der Nachweis geführt, dass das Projektziel erreicht wird.
Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Im Gesamtverbund wird sich die Hochschule Bochum hauptsächlich mit 3 Teilprojekten und zusätzlicher Mitarbeit in weiteren Teilprojekten beschäftigen: 1.) Physikalische Modellierung des Ladevorgangs und Simulation des Lade- und Fahrzyklus. Dabei steht die Durchdringung der Schnellladeproblematik mit Definitionen zu Anforderungen, Herausforderungen und Zielkonflikten des Systems im Vordergrund. 2.) Wissenschaftliche Auseinandersetzung mit der Kontaktierung innerhalb der Ladestation und im Batteriezellverbund bzw. zwischen Ladesäule und Fahrzeugbatterie. Hier werden im Rahmen einer Promotion die Möglichkeiten von Kontaktmaterialen, der Verbindungsformen, Einflussnahme auf die Wärmeentwicklung bzw. Wärmeabfuhr und das Optimierungspotential bei der Kontaktierung mit hohen Stromstärken bearbeitet. Ziel ist eine möglich effiziente Verbindung mit geringen Verlusten ohne zusätzliche Anforderungen an das Temperaturmanagement. 3.) Aufbau eines Demonstrationsfahrzeugs mit dem die Entwicklungskomponenten der Kooperationspartner, Schnellladestation und Fahrzeugbatterie, einem realitätsnahen Testprogramm folgend, erprobt und veranschaulicht werden können. Die Fahrzeugtechnologie (Spannungsebene, Temperaturkonditionierung usw.) müssen den geänderten Anforderungen angepasst werden und werden als mögliche Herausforderungen gelistet. Als Projektabschluss und übergeordnetes Hauptziel wird mit dem Prototypenfahrzeug der Nachweis geführt, dass das Projektziel erreicht wird.
Der Klimazonenlehre kommt in der Schulgeographie nach wie vor eine wichtige Bedeutung zu. Dabei kommen zur räumlichen Abgrenzung und Definition verschiedener Klimate bisher meist Klimaklassifikationen zum Einsatz, die sämtliche Gliederungsebenen starr und ohne Vorstufen in einer Klimakarte darstellen und deren Datengrundlage inzwischen stark veraltet ist (Köppen/Geiger 1928, Troll/Paffen 1963). Das in den letzten Jahren entwickelte Klassifikationskonzept basiert im Gegensatz dazu auf einem modularen Baukastensystem, durch den ein sukzessiver, didaktisch begründeter Auf- und Ausbau möglich ist. Als Einteilungskriterien des effektiven Klassifikationsansatzes dienen Temperatur-, Niederschlags- und potenzielle Landschaftsverdunstungswerte. Durch die variable Zahl von Untergliederungsstufen lassen sich der Aufbau und der Komplexitätsgrad der Klimaeinteilung an die jeweiligen Bedürfnisse des Anwenders anpassen. In der aktuellen Projektphase werden die Klassifikationskriterien auf neu verfügbare globale Klimadatensätze angewandt. Dies ermöglicht im Vergleich zu historischen Werten eine Analyse und Visualisierung der Verschiebung von Klimazonen durch den globalen Klimawandel. Ergebnisse: Der Wärme- und Wasserhaushalt stellen die wichtigsten Kennzeichen des Klimas eines Raumes dar. Sie steuern wesentlich die Verbreitung der natürlichen Vegetation und die landwirtschaftlichen Nutzungsmöglichkeiten. Aus diesem Grund lässt sich die Erde auf der Grundlage der jährlichen Durchschnittstemperaturen in vier Temperaturzonen gliedern: die Tropen, Subtropen, Mittelbreiten und Subpolare/Polare Zone. Auf dieser einfachen Ebene eignet sich der Klassifikationsentwurf als Einstieg für klimageographische Themen in den unteren Klassenstufen der Sekundarstufe I. Es gibt jedoch auch Regionen auf der Erde, in denen nicht die Temperaturen, sondern der permanente oder periodische Wassermangel die entscheidenden Grenzen für das Pflanzenwachstum setzt. Aus diesem Grund werden durch jährliche Niederschlagsmengen von weniger als ca. 300 mm die Trockenklimate abgegrenzt. Sie kennzeichnen die Verbreitung von Wüstengebieten auf der Erde, innerhalb der fünf Klimazonen findet eine weitere klimatische Unterteilung in verschiedene Klimatypen statt. Dabei kommt dem Wasserhaushalt einer Region eine wesentliche Rolle zu. Dieser wird auf der Grundlage des für die Vegetation zur Verfügung stehenden Wasserangebots definiert. Liegt die durchschnittliche monatliche Niederschlagsmenge (N) über der pLV (N größer/gleich pLV), so ist dieser Monat humid (feucht), im umgekehrten Fall (N kleiner pLV) arid (trocken). Auf der Grundlage der Zahl humider Monate lassen sich vier hygrische Klimatypen unterscheiden - aride, semiaride, semihumide und humide. Ein weiteres wichtiges Kennzeichen des Klimas einer Region stellen die jahreszeitlichen Temperaturschwankungen dar. Sie steuern wesentlich den Wärmehaushalt. Dabei lassen sich auf der Grundlage des Temperaturunterschieds zwischen dem Monat mit der wärmsten