Das Projekt 'Windheizung 2.0: Demo' dient der Weiterentwicklung und Demonstration einer systemverträglichen Sektorenkopplung zwischen der zukünftig steigenden regenerativen Stromerzeugung und der Wärmeversorgung hoch gedämmter Gebäude. Im Vorhaben wird die gesamte Systemtechnik der Windheizung 2.0 weiterentwickelt, die Nutzer-Interaktion mit Technik und Regelung untersucht und die Nutzer-Akzeptanz des Systems erfasst. Hierzu werden 4 Gebäude mit je einer der 4 Windheizung 2.0-Speichertechnologien ausgestattet. - großer Warmwasserspeicher - Bauteilaktivierung Alt- und Neubauvariante - Hochtemperatur-Steinspeicher Im Rahmen der vorangegangenen Windheizung 2.0 Projekte wurden Simulationsmodelle für die Anlagentechnik- und Speichersysteme entwickelt, validiert und in die Software WUFI® Plus integriert. Hiermit werden im Planungsprozess die Demogebäude, deren Anlagentechnik- und Speichersysteme als Modelle abgebildet und mit den Ergebnissen die Fachplanung unterstützt. Im Arbeitsschwerpunkt Netzintegration werden die folgenden 4 wesentlichen Punkte bearbeitet: - Online-Fähigkeit Bereitstellung prognosebasierter Schaltempfehlungen - Marktdienlichkeit Schaltempfehlungen - Netzdienlichkeit Schaltempfehlungen - Energiewirtschaftliche und -politische Aspekte der Preisgestaltung für WH 2.0 Gebäude Der gegenwärtige Stand des HTTS wird konstruktiv und werkstoffseitig weiterentwickelt und optimiert. Ziel ist die Erhöhung der Speicherkapazität unter Beibehaltung der Abmessungen. Die Luftführung wird vereinfacht. Der Vorfertigungsgrad des Speichers soll erhöht werden. Der optimierte HTTS wird im Musterhaus aufgebaut und betrieben. Weiterhin soll für den HTTS eine Variante entwickelt werden, welche für eine Aufstellung außerhalb des Gebäudes geeignet ist.
Das Projekt 'Windheizung 2.0: Demo' dient der Weiterentwicklung und Demonstration einer systemverträglichen Sektorenkopplung zwischen der zukünftig steigenden regenerativen Stromerzeugung und der Wärmeversorgung hoch gedämmter Gebäude. Im Vorhaben wird die gesamte Systemtechnik der Windheizung 2.0 weiterentwickelt, die Nutzer-Interaktion mit Technik und Regelung untersucht und die Nutzer-Akzeptanz des Systems erfasst. Hierzu werden 4 Gebäude mit je einer der 4 Windheizung 2.0-Speichertechnologien ausgestattet. - großer Warmwasserspeicher - Bauteilaktivierung Alt- und Neubauvariante - Hochtemperatur-Steinspeicher Im Rahmen der vorangegangenen Windheizung 2.0 Projekte wurden Simulationsmodelle für die Anlagentechnik- und Speichersysteme entwickelt, validiert und in die Software WUFI® Plus integriert. Hiermit werden im Planungsprozess die Demogebäude, deren Anlagentechnik- und Speichersysteme als Modelle abgebildet und mit den Ergebnissen die Fachplanung unterstützt. Im Arbeitsschwerpunkt Netzintegration werden die folgenden 4 wesentlichen Punkte bearbeitet: - Online-Fähigkeit Bereitstellung prognosebasierter Schaltempfehlungen - Marktdienlichkeit Schaltempfehlungen - Netzdienlichkeit Schaltempfehlungen - Energiewirtschaftliche und -politische Aspekte der Preisgestaltung für WH 2.0 Gebäude.
Das Projekt 'Windheizung 2.0: Demo' dient der Weiterentwicklung und Demonstration einer systemverträglichen Sektorenkopplung zwischen der zukünftig steigenden regenerativen Stromerzeugung und der Wärmeversorgung hoch gedämmter Gebäude. Im Vorhaben wird die gesamte Systemtechnik der Windheizung 2.0 weiterentwickelt, die Nutzer-Interaktion mit Technik und Regelung untersucht und die Nutzer-Akzeptanz des Systems erfasst. Hierzu werden 4 Gebäude mit je einer der Windheizung 2.0-Speichertechnologien ausgestattet. - großer Warmwasserspeicher - Bauteilaktivierung Alt- und Neubauvariante - Hochtemperatur-Steinspeicher Im Rahmen der vorangegangenen Windheizung 2.0 Projekte wurden Simulationsmodelle für die Anlagentechnik- und Speichersysteme entwickelt, validiert und in die Software WUFI® Plus integriert. Hiermit werden im Planungsprozess die Demogebäude, deren Anlagentechnik- und Speichersysteme als Modelle abgebildet und mit den Ergebnissen die Fachplanung unterstützt. Im Arbeitsschwerpunkt Netzintegration werden die folgenden 4 wesentlichen Punkte bearbeitet: - Online-Fähigkeit Bereitstellung prognosebasierter Schaltempfehlungen - Marktdienlichkeit Schaltempfehlungen - Netzdienlichkeit Schaltempfehlungen - Energiewirtschaftliche und -politische Aspekte der Preisgestaltung für WH 2.0 Gebäude.
Das Projekt 'Windheizung 2.0: Demo' dient der Weiterentwicklung und Demonstration einer systemverträglichen Sektorenkopplung zwischen der zukünftig steigenden regenerativen Stromerzeugung und der Wärmeversorgung hoch gedämmter Gebäude. Im Vorhaben wird die gesamte Systemtechnik der Windheizung 2.0 weiterentwickelt, die Nutzer-Interaktion mit Technik und Regelung untersucht und die Nutzer-Akzeptanz des Systems erfasst. Hierzu werden 4 Gebäude mit je einer der 4 Windheizung 2.0-Speichertechnologien ausgestattet. -großer Warmwasserspeicher -Bauteilaktivierung Alt- und Neubauvariante -Hochtemperatur-Steinspeicher Im Rahmen der vorangegangenen Windheizung 2.0 Projekte wurden Simulationsmodelle für die Anlagentechnik- und Speichersysteme entwickelt, validiert und in die Software WUFI® Plus integriert. Hiermit werden im Planungsprozess die Demogebäude, deren Anlagentechnik- und Speichersysteme als Modelle abgebildet und mit den Ergebnissen die Fachplanung unterstützt. Im Arbeitsschwerpunkt Netzintegration werden die folgenden 4 wesentlichen Punkte bearbeitet: -Online-Fähigkeit Bereitstellung prognosebasierter Schaltempfehlungen -Marktdienlichkeit Schaltempfehlungen -Netzdienlichkeit Schaltempfehlungen -Energiewirtschaftliche und -politische Aspekte der Preisgestaltung für WH 2.0 Gebäude
Die Erfahrung mit der ZSW-eigenen PV-Fassadenanlage zeigt, dass sowohl Wartung als auch Überwachung einer Fassadenanlage sehr aufwendig und komplex sind. Daher werden mehrere Strategien parallel verfolgt. Es soll der Einfluss von modulnaher Verschattung, beispielsweise durch Vorsprünge innerhalb der eigenen Fassade, aber auch modulferner Schatten durch die Umgebung, untersucht werden, wodurch eine verbesserte elektrotechnische Auslegung sowohl der PV-Module als auch des Fassadensystems ermöglicht wird. Berührungslose Prüfverfahren werden für die Wartung und Instandhaltung wegen der schlechten Zugänglichkeit von PV-Fassaden künftig eine große Rolle spielen. Daher werden im Projekt die Grenzen bestehender Prüfverfahren und Möglichkeiten alternativer, bisher nicht eingesetzter Untersuchungsmethoden untersucht. Anders als bei geneigten und meist südorientierten PV-Anlagen gibt es keinen einfachen Zusammenhang zwischen Einstrahlung und abgegebener Leistung aufgrund der unterschiedlichen Orientierung der PV-Fassaden und der starken saisonalen Schwankung des Einflusses von im urbanen Umfeld unvermeidlichen Verschattungen. Daher soll zur Überwachung des Betriebs einer PV-Fassade deren digitaler Zwilling entwickelt und als kommerzielles Produkt umgesetzt werden. Ziel des Projektes ist die Reduzierung der Stromgestehungskosten durch eine optimierte Auslegung und daraus resultierend der optimierte Betrieb und die vereinfachte Wartung von PV-Fassadenanlagen.
Die Arbeiten der Firma Precitec zur Systemtechnik und Prozessüberwachung beim Laserstrahlfügen teilen sich in die zwei Bereiche Schweißen und Löten, die sich insbesondere aufgrund der auftretenden Prozesstemperaturen und Prozessgeschwindigkeiten stark unterscheiden. Precitec wird eine Analyse und einen Vergleich unterschiedlicher Methoden und Sensorkonzepte im Hinblick auf Hochgeschwindigkeitsprozesse durchführen und basierend darauf ein Konzept realisieren für eine spezifizierte Systemtechnik mit integrierter Prozesskontrolle für den Hochgeschwindigkeitsfügeprozess. Es soll der Mikromaterialbearbeitungs-Galvanometerscanner 'Scanmaster 2000' weiterentwickelt werden, insbesondere die zugehörige Sensorik zur In situ-Prozessüberwachung. Die Sensorik dient zweierlei Ziele: Mittels einer koaxialen Kamera sollen die Ortskoordinaten der Wafer-Kanten schnell und verlässlich mit einer Genauigkeit von 50 µm erkannt werden und der Laserprozess direkt an den tatsächlichen Verlauf der Kanten angepasst werden, so dass die Fügestellen so nah als möglich an der Waferkante verlaufen. Zweitens soll die Güte des Laserprozesses für die verschiedenen Prozessklassen 'Bonden' und 'Schweißen' ebenfalls durch koaxiale Sensorik bereits während des Prozess geprüft und der Prozess darüber kontrolliert und optimiert werden können.
Die aktuellen Herausforderungen im Teilvorhaben, beziehen sich insbesondere auf die Systemintegration der Einzelkomponenten und neuer Steuerungs- und Betriebsführungsverfahren des Speichers. Weitere Herausforderungen bestehen bei der Ausarbeitung von Konzepten für die Installation, Logistik, Wartung und den Netzanschluss, die erstmalig offshore für diese Technologie angewandt und entwickelt werden müssen.
| Origin | Count |
|---|---|
| Bund | 478 |
| Type | Count |
|---|---|
| Förderprogramm | 478 |
| License | Count |
|---|---|
| offen | 478 |
| Language | Count |
|---|---|
| Deutsch | 463 |
| Englisch | 57 |
| Resource type | Count |
|---|---|
| Keine | 305 |
| Webseite | 173 |
| Topic | Count |
|---|---|
| Boden | 196 |
| Lebewesen und Lebensräume | 169 |
| Luft | 184 |
| Mensch und Umwelt | 474 |
| Wasser | 125 |
| Weitere | 478 |